当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
Science ( IF 44.7 ) Pub Date : 2018-01-18 , DOI: 10.1126/science.aaq0591
Qing-Yuan Lin 1, 2 , Jarad A. Mason 1, 3 , Zhongyang Li 4 , Wenjie Zhou 1, 3 , Matthew N. O’Brien 1, 3 , Keith A. Brown 1, 3 , Matthew R. Jones 1, 2 , Serkan Butun 4 , Byeongdu Lee 5 , Vinayak P. Dravid 1, 2 , Koray Aydin 4 , Chad A. Mirkin 1, 2, 3
Affiliation  

Programmed nanoparticle stacking A polymer pore template can control the order of assembly of nanoparticles into well-defined stacks and create superlattices. Lin et al. used DNA strands on gold nanoparticles to control interparticle distance. The DNA strands contained modified adenines with more rigid ribose groups that formed stronger base pairs. The height of the stacks of three different types of gold nanoparticle could be changed with different solvents, which in turn changed their optical response. Science, this issue p. 669 Locked DNA strands and micropores are used to assemble nanoparticles with different sizes and shapes into superlattices. DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.

中文翻译:

通过模板限制的 DNA 介导组装从单个纳米粒子构建超晶格

程序化的纳米粒子堆叠聚合物孔模板可以控制纳米粒子组装成明确定义的堆叠的顺序并创建超晶格。林等人。使用金纳米粒子上的 DNA 链来控制粒子间距离。DNA 链包含修饰的腺嘌呤,具有更刚性的核糖基团,形成更强的碱基对。三种不同类型的金纳米粒子堆叠的高度可以用不同的溶剂改变,这反过来又改变了它们的光学响应。科学,这个问题 p。669 条锁定的 DNA 链和微孔用于将不同大小和形状的纳米粒子组装成超晶格。DNA 可编程组装与自上而下的光刻相结合,在大面积的金表面上构建离散的、可重构的纳米粒子结构的超晶格。具体来说,具有不同形状和尺寸的单个胶体等离子体纳米粒子的组装由包含“锁定”核酸的寡核苷酸和聚合物孔提供的密闭环境控制,以产生具有可调节排列和在纳米和微米长度尺度上独立可控距离的定向结构. 这些结构很难通过其他常见的组装方法构建,为系统地研究和控制基于纳米粒子的光学材料中的光-物质相互作用提供了一个平台。通过确定具有溶剂极性响应的宽带吸收剂,可以对可见光吸收进行动态调整,从而探索了这种方法的通用性和潜力。
更新日期:2018-01-18
down
wechat
bug