当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Disposable Morpho menelaus Based Flexible Microfluidic and Electronic Sensor for the Diagnosis of Neurodegenerative Disease
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2018-01-18 , DOI: 10.1002/adhm.201701306
Zhenzhu He 1 , Abdelrahman Elbaz 1 , Bingbing Gao 1 , Junning Zhang 1 , Enben Su 2 , Zhongze Gu 1
Affiliation  

Rapid early disease prevention or precise diagnosis is almost impossible in low‐resource settings. Natural ordered structures in nature have great potential for the development of ultrasensitive biosensors. Here, motivated by the unique structures and extraordinary functionalities of ordered structures in nature, a biosensor based on butterfly wings is presented. In this study, a flexible Morpho menelaus (M. menelaus) based wearable sensor is integrated with a microfluidic system and electronic networks to facilitate the diagnosis of neurodegenerative disease (ND). In the microfluidic section, the structural characteristics of the M. menelaus wings up layer are combined with SiO2 nanoparticles to form a heterostructure. The fluorescent enhancement property of the heterostructure is used to increase the fluorescent intensity for multiplex detection of two proteins: IgG and AD7c‐NTP. For the electronic section, conductive ink is blade‐coated on the under layer of wings for measuring resistance change rate to obtain the frequency of static tremors of ND patients. The disposable M. menelaus based flexible microfluidic and electronic sensor enables biochemical–physiological hybrid monitoring of ND. The sensor is also amenable to a variety of applications, such as comprehensive personal healthcare and human‐machine interaction.

中文翻译:

基于一次性Morpho Menelaus的柔性微流控和电子传感器用于神经退行性疾病的诊断

在资源匮乏的环境中,几乎不可能进行快速的早期疾病预防或精确诊断。自然界中的自然有序结构在开发超灵敏生物传感器方面具有巨大潜力。在这里,受自然界中有序结构的独特结构和非凡功能的启发,提出了一种基于蝴蝶翅膀的生物传感器。在这项研究中,基于柔性Morpho menelausM. menelaus)的可穿戴传感器与微流体系统和电子网络集成在一起,以促进神经退行性疾病(ND)的诊断。在微流体部分,半月板叶的翅膀上层的结构特征与SiO 2相结合纳米颗粒形成异质结构。异质结构的荧光增强特性用于增加荧光强度,以多重检测两种蛋白质:IgG和AD7c-NTP。对于电子部分,将导电油墨刮涂在机翼的下层,以测量电阻变化率,从而获得ND患者的静态震颤频率。基于一次性M. menelaus的柔性微流控和电子传感器可以对ND进行生化-生理混合监测。该传感器还适用于多种应用,例如全面的个人医疗保健和人机交互。
更新日期:2018-01-18
down
wechat
bug