当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perfect Adaptation and Optimal Equilibrium Productivity in a Simple Microbial Biofuel Metabolic Pathway Using Dynamic Integral Control
ACS Synthetic Biology ( IF 4.7 ) Pub Date : 2018-01-30 00:00:00 , DOI: 10.1021/acssynbio.7b00188
Corentin Briat 1 , Mustafa Khammash 1
Affiliation  

The production of complex biomolecules by genetically engineered organisms is one of the most promising applications of metabolic engineering and synthetic biology. To obtain processes with high productivity, it is therefore crucial to design and implement efficient dynamic in vivo regulation strategies. We consider here the microbial biofuel production model of Dunlop et al. (2010) for which we demonstrate that an antithetic dynamic integral control strategy can achieve robust perfect adaptation for the intracellular biofuel concentration in the presence of poorly known network parameters and implementation errors in certain rate parameters of the controller. We also show that the maximum equilibrium extracellular biofuel productivity is fully defined by some of the network parameters and, in this respect, it can only be achieved when all the corresponding parameters are perfectly known. Since this optimum is a network property, it cannot be improved by the use of any controller that measures the intracellular biofuel concentration and acts on the production of pump proteins. Additional intrinsic fundamental properties for the process are also unveiled, the most important ones being the existence of a conservation relation between the productivity and the toxicity, a low sensitivity of the optimal productivity with respect to a poor implementation of the set-point for the intracellular biofuel, and a strong intrinsic robustness property of the optimal productivity with respect to poorly known parameters. Taken together, these results demonstrate that a high and robust equilibrium rate of production for the extracellular biofuel can be achieved when the parameters of the model are poorly known and those of the controllers are poorly implemented. Finally, several advantages of the proposed dynamic strategy over a static one are also emphasized.

中文翻译:

使用动态积分控制的简单微生物生物燃料代谢途径的完美适应和最佳平衡生产力

基因工程生物生产复杂的生物分子是代谢工程和合成生物学最有前途的应用之一。为了获得高生产率的过程,因此设计和实施有效的动态体内调节策略至关重要。在这里,我们考虑邓禄普等人的微生物生物燃料生产模型(2010年),我们证明了一种对立的动态积分控制策略可以实现对细胞内生物燃料浓度的鲁棒的完美适应,在存在未知的网络参数和控制器某些速率参数的实现错误的情况下。我们还表明,最大平衡细胞外生物燃料生产率完全由某些网络参数定义,并且在这方面,只有在所有相应参数都完全已知的情况下才能实现。由于此最佳值是网络属性,因此无法通过使用任何可测量细胞内生物燃料浓度并作用于泵蛋白产生的控制器来改善它。还揭示了该过程的其他固有基本属性,最重要的是生产率与毒性之间存在保守关系,相对于细胞内生物燃料设定值执行不佳,最优生产率的敏感性较低,以及最优的强大内在鲁棒性相对于鲜为人知的参数的生产率。两者合计,这些结果表明,当模型的参数知之甚少且控制器的参数执行不力时,可以实现细胞外生物燃料的高而稳健的均衡生产率。最后,还强调了所提出的动态策略相对于静态策略的几个优点。最佳生产率相对于细胞内生物燃料设定值执行不佳的敏感性低,以及最优生产率相对于未知参数的强大内在鲁棒性。两者合计,这些结果表明,当模型的参数知之甚少且控制器的参数执行不力时,可以实现细胞外生物燃料的高而稳健的均衡生产率。最后,还强调了所提出的动态策略相对于静态策略的几个优点。最佳生产率相对于细胞内生物燃料设定值执行不佳的敏感性低,以及最优生产率相对于未知参数的强大内在鲁棒性。两者合计,这些结果表明,当模型的参数知之甚少且控制器的参数执行不力时,可以实现细胞外生物燃料的高而稳健的均衡生产率。最后,还强调了所提出的动态策略相对于静态策略的几个优点。这些结果表明,当模型的参数不为人所知且控制器的实现不当时,可以实现细胞外生物燃料的高而稳健的平衡生产率。最后,还强调了所提出的动态策略相对于静态策略的几个优点。这些结果表明,当模型的参数不为人所知且控制器的实现不当时,可以实现细胞外生物燃料的高而稳健的平衡生产率。最后,还强调了所提出的动态策略相对于静态策略的几个优点。
更新日期:2018-01-30
down
wechat
bug