当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials
npj Computational Materials ( IF 9.7 ) Pub Date : 2018-01-17 , DOI: 10.1038/s41524-017-0059-2
Daniel A. Rehn , Yao Li , Eric Pop , Evan J. Reed

Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100–10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.



中文翻译:

利用2D材料中的静电感应结构相变实现低能耗相变存储器的理论潜力

结构相变材料对于信息存储设备中的应用非常重要。与主流的非易失性存储技术相比,在相变存储器中采用了热驱动的结构相变,以实现更低的编程电压和更低的能耗。然而,由这种热机制产生的废热通常没有被优化,并且可能成为广泛使用的限制因素。最近已经预测了静电驱动的结构相变的潜力,并随后在某些二维材料中进行了报道,从而提供了一种无热机制,可以以非易失性方式动态控制这些材料的性能,同时实现了更低的能耗。在这项工作中,我们采用基于DFT的计算方法,对驱动静电感应相变和热感应相变所需的能量进行理论比较。确定单层MoTe的理论极限从图2和Ge 2 Sb 2 Te 5的薄膜中,我们发现室温下单层MoTe 2的静电驱动相变每单位体积的能量消耗是Ge热驱动相变的绝热下限的9%。2 Sb 2 Te 5。此外,实验报告的Ge 2 Sb 2 Te 5的相变能量消耗比绝热下限大100–10,000倍,这是由于废热从材料中逸出,从而有可能在单层MoTe 2中消耗能量基的器件要比基于Ge 2 Sb 2 Te 5的器件小几个数量级。

更新日期:2018-01-17
down
wechat
bug