当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical anisotropy modulation in nonpolar a -plane AlGaN by manipulating the anisotropic in-plane strains through SiN x interlayers engineering
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2018-04-01 , DOI: 10.1016/j.jallcom.2018.01.155
Yi Zhang , Jun Zhang , Hanling Long , Jingwen Chen , Shuai Wang , Ju He , Jiangnan Dai , Changqing Chen

Abstract The achievement of high polarization nonpolar III-nitrides has been hindered by high density of defects, large surface fluctuations and in-plane strains. Here, we show that these critical challenges can be improved by manipulating the growth time of SiNx interlayers. The discolation density of nonpolar a-plane Al0.1Ga0.9N has been effectively reduced by introducing the in-situ deposited SiNx interlayer, as the nonpolar a-plane Al0.1Ga0.9N can only nucleate at open pores of SiNx nanomask. During the growth process, the lateral overgrowth will occur from the openings with the dislocation bending and annihilation. Furthermore, the strip distributed nanomask can change the anisotropy of in-plane strains and optical properties of nonpolar a-plane Al0.1Ga0.9N. When the growth time of SiNx increased from 0 min to 2 min, the in-plane strain along m-axis and c-axis direction changed from −0.2250% and −0.5145% to −0.0638% and −0.2728%, respectively. More importantly, the optical degree of polarization of nonpolar a-plane Al0.1Ga0.9N has been changed from 0.4385 to 0.8129 along with the increase SiNx deposition time by polarized photoluminescence. By simplely changing the SiNx growth time, high polarization nonpolar a-plane devices may be fabricated on this high quality strain-modulatable nonpolar AlGaN template, which is desirable for high efficiency liquid crystal displays or other polarization sensitive photodetectors.

中文翻译:

通过 SiN x 夹层工程操纵各向异性面内应变,在非极性 a 面 AlGaN 中进行光学各向异性调制

摘要 高极化非极性 III 族氮化物的实现一直受到缺陷密度高、表面波动大和面内应变的阻碍。在这里,我们表明可以通过控制 SiNx 中间层的生长时间来改善这些关键挑战。由于非极性 a 面 Al0.1Ga0.9N 只能在 SiNx 纳米掩模的开孔处成核,因此通过引入原位沉积的 SiNx 中间层,有效降低了非极性 a 面 Al0.1Ga0.9N 的离解密度。在生长过程中,随着位错弯曲和湮灭,开口会发生横向过度生长。此外,条状分布的纳米掩模可以改变非极性a面Al0.1Ga0.9N的面内应变各向异性和光学特性。当 SiNx 的生长时间从 0 min 增加到 2 min 时,沿m轴和c轴方向的面内应变分别从-0.2250%和-0.5145%变为-0.0638%和-0.2728%。更重要的是,随着SiNx沉积时间的增加,非极性a面Al0.1Ga0.9N的光学偏振度从0.4385变为0.8129。通过简单地改变 SiNx 生长时间,可以在这种高质量的应变调制非极性 AlGaN 模板上制造高偏振非极性 a 面器件,这是高效液晶显示器或其他偏振敏感光电探测器所需要的。8129 以及通过偏振光致发光增加 SiNx 沉积时间。通过简单地改变 SiNx 生长时间,可以在这种高质量的应变调制非极性 AlGaN 模板上制造高偏振非极性 a 面器件,这是高效液晶显示器或其他偏振敏感光电探测器所需要的。8129 以及通过偏振光致发光增加 SiNx 沉积时间。通过简单地改变 SiNx 生长时间,可以在这种高质量的应变调制非极性 AlGaN 模板上制造高偏振非极性 a 面器件,这是高效液晶显示器或其他偏振敏感光电探测器所需要的。
更新日期:2018-04-01
down
wechat
bug