当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery
Nano Research ( IF 9.5 ) Pub Date : 2017-08-22 , DOI: 10.1007/s12274-017-1686-0
Zhenxing Yin , Sanghun Cho , Duck-Jae You , Yong-keon Ahn , Jeeyoung Yoo , Youn Sang Kim

A novel lightweight three-dimensional (3D) composite anode for a fast-charging/discharging Li-ion battery (LIB) was fabricated entirely using one-dimensional (1D) nanomaterials, i.e., Cu nanowires (CuNWs) and multi-walled C nanotubes (MWCNTs). Because of the excellent electrical conductivity, high-aspect ratio structures, and large surface areas of these nanomaterials, the CuNW-MWCNT composite (CNMC) with 3D structure provides significant advantages regarding the transport pathways for both electrons and ions. As an advanced binder-free anode, a CuNW-MWCNT composite film with a controllable thickness (∼600 μm) exhibited a considerably low sheet resistance, and internal cell resistance. Furthermore, the random CuNW network with 3D structure acting as a rigid framework not only prevented MWCNT shrinkage and expansion due to aggregation and swelling but also minimized the effect of the volume change during the charge/discharge process. Both a half cell and a full cell of LIBs with the CNMC anode exhibited high specific capacities and Coulombic efficiencies, even at a high current. More importantly, we for the first time overcame the limitation of MWCNTs as anode materials for fast-charging/discharging LIBs (both half cells and full cells) by employing CuNWs, and the resulting anode can be applied to flexible LIBs. This innovative anode structure can lead to the development of ultrafast chargeable LIBs for electric vehicles.

Open image in new window


中文翻译:

铜纳米线/多壁碳纳米管复合材料作为全纳米线柔性电极,用于锂离子电池的快速充电/放电

完全使用一维(1D)纳米材料,即Cu纳米线(CuNWs)和多壁C纳米管,制造了用于快速充电/放电锂离子电池(LIB)的新型轻量级三维(3D)复合阳极。 (MWCNT)。由于这些纳米材料具有出色的导电性,高长宽比的结构以及较大的表面积,因此具有3D结构的CuNW-MWCNT复合材料(CNMC)在电子和离子的传输途径方面均具有显着优势。作为一种先进的无粘合剂阳极,具有可控制厚度(约600μm)的CuNW-MWCNT复合膜表现出相当低的薄层电阻和内部电池电阻。此外,具有3D结构的刚性CuNW网络充当刚性框架,不仅防止了MWCNT由于聚集和溶胀而收缩和膨胀,而且使充电/放电过程中体积变化的影响最小化。即使是在高电流下,带有CNMC阳极的LIB的半电池和全电池都显示出高的比容量和库仑效率。更重要的是,我们首次通过采用CuNW克服了MWCNTs作为快速充电/放电LIB(半电池和全电池)阳极材料的局限性,并将得到的阳极应用于柔性LIB。这种创新的阳极结构可以导致电动汽车可充电超快LIB的发展。带有CNMC阳极的LIB的半电池和全电池即使在高电流下也显示出高的比容量和库仑效率。更重要的是,我们首次通过采用CuNW克服了MWCNTs作为快速充电/放电LIB(半电池和全电池)阳极材料的局限性,并将得到的阳极应用于柔性LIB。这种创新的阳极结构可以导致电动汽车可充电超快LIB的发展。带有CNMC阳极的LIB的半电池和全电池即使在高电流下也显示出高的比容量和库仑效率。更重要的是,我们首次通过采用CuNW克服了MWCNTs作为快速充电/放电LIB(半电池和全电池)阳极材料的局限性,并将得到的阳极应用于柔性LIB。这种创新的阳极结构可以导致电动汽车可充电超快LIB的发展。

在新窗口中打开图像
更新日期:2017-08-22
down
wechat
bug