当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct photoactivation of a nickel-based, water-reduction photocathode by a highly conjugated supramolecular chromophore†
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2018-01-11 00:00:00 , DOI: 10.1039/c7ee03115g
Bing Shan 1, 2, 3, 4 , Animesh Nayak 1, 2, 3, 4 , Renato N. Sampaio 1, 2, 3, 4 , Michael S. Eberhart 1, 2, 3, 4 , Ludovic Troian-Gautier 1, 2, 3, 4 , M. Kyle Brennaman 1, 2, 3, 4 , Gerald J. Meyer 1, 2, 3, 4 , Thomas J. Meyer 1, 2, 3, 4
Affiliation  

In dye-sensitized photoelectrosynthesis cells, multi-step photoinduced electron transfer takes place to generate redox-separated (RS) states that activate catalysts for water splitting or carbon dioxide reduction. From photoexcitation of the chromophores to formation of the RS states, the solar energy initially stored at the chromophore excited states is reduced stepwise in a sequence of photoinduced electron transfer steps. We report here a water-reduction photocathode based on a supramolecular chromophore, an ethyne-bridged (porphyrinato)zincII and bis(terpyridyl)rutheniumII complex, which is surface-bound to a mesoporous nickel oxide electrode, with an over-layer of nickel sulfide derivative as a water reduction catalyst. Visible light excitation of the chromophore generates a long-lived RS state that forms directly at its excited state with the electron delocalized at the terpyridyl ligands for transferring to the nickel sulfide catalyst, and the hole at the zinc porphyrin moiety for injecting into the nickel oxide electrode. The resulting photocathode shows enhanced photoelectrocatalytic performances relative to the previously reported NiO-based photocathodes. A key element lies in the efficient, direct activation of the catalyst by the long-lived, RS excited state that minimizes the energy loss along the photoinduced electron transfer steps towards water reduction.

中文翻译:

高度共轭的超分子生色团对镍基减水光阴极的直接光活化作用

在染料敏化的光电子合成电池中,发生多步光致电子转移,以生成氧化还原分离(RS)状态,从而激活用于水分解或二氧化碳还原的催化剂。从生色团的光激发到形成RS态,最初在生色团激发态下存储的太阳能在一系列光诱导电子转移步骤中逐步降低。我们在这里报告基于超分子生色团,乙炔桥(卟啉)锌II和双(吡啶基)钌II的减水光电阴极配合物,该配合物表面键合到中孔氧化镍电极上,并覆盖一层硫化镍衍生物作为减水催化剂。生色团的可见光激发产生长寿命的RS状态,该状态直接在其激发态形成,在叔吡啶基配体上离域的电子被转移到硫化镍催化剂上,而卟啉锌部分的空穴被注入到氧化镍中。电极。相对于先前报道的基于NiO的光电阴极,所得的光电阴极显示出增强的光电催化性能。关键因素在于催化剂的长寿命,RS激发态能够有效,直接地活化催化剂,从而最大限度地减少了光致电子转移步骤中向减水过程中的能量损失。
更新日期:2018-01-11
down
wechat
bug