当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nociceptive Memristor
Advanced Materials ( IF 29.4 ) Pub Date : 2018-01-10 , DOI: 10.1002/adma.201704320
Yumin Kim 1 , Young Jae Kwon 1 , Dae Eun Kwon 1 , Kyung Jean Yoon 1 , Jung Ho Yoon 2 , Sijung Yoo 1 , Hae Jin Kim 1 , Tae Hyung Park 1 , Jin-Woo Han 3 , Kyung Min Kim 4 , Cheol Seong Hwang 1
Affiliation  

The biomimetic characteristics of the memristor as an electronic synapse and neuron have inspired the advent of new information technology in the neuromorphic computing. The application of the memristors can be extended to the artificial nerves on condition of the presence of electronic receptors which can transfer the external stimuli to the internal nerve system. In this work, nociceptor behaviors are demonstrated from the Pt/HfO2/TiN memristor for the electronic receptors. The device shows four specific nociceptive behaviors; threshold, relaxation, allodynia, and hyperalgesia, according to the strength, duration, and repetition rate of the external stimuli. Such nociceptive behaviors are attributed to the electron trapping/detrapping to/from the traps in the HfO2 layer, where the depth of trap energy level is ≈0.7 eV. Also, the built‐in potential by the work function mismatch between the Pt and TiN electrodes induces time‐dependent relaxation of trapped electrons, providing the appropriate relaxation behavior. The relaxation time can take from several milliseconds to tens of seconds, which corresponds to the time span of the decay of biosignal. The material‐wise evaluation of the electronic nociceptor in comparison with other material, which did not show the desired functionality, Pt/Ti/HfO2/TiN, reveals the importance of careful material design and fabrication.

中文翻译:

伤害性忆阻器

忆阻器作为电子突触和神经元的仿生特性激发了神经形态计算中新信息技术的出现。忆阻器的应用可以在电子受体存在的条件下扩展到人工神经,该电子受体可以将外部刺激转移到内部神经系统。在这项工作中,从电子受体的Pt / HfO 2 / TiN忆阻器证明了伤害感受器的行为。该设备显示出四种特定的伤害行为:根据外部刺激的强度,持续时间和重复率确定阈值,放松,异常性疼痛和痛觉过敏。这种伤害行为归因于电子向HfO 2中的陷阱捕集/从中捕获。层,陷阱能级的深度约为0.7 eV。此外,Pt和TiN电极之间功函数不匹配所产生的内在电势会引起捕获电子随时间的弛豫,从而提供适当的弛豫行为。弛豫时间可能需要几毫秒到几十秒,这对应于生物信号衰减的时间跨度。与其他材料相比,电子伤害感受器在材料方面的评估没有显示出所需的功能,即Pt / Ti / HfO 2 / TiN,这显示了精心设计和制造材料的重要性。
更新日期:2018-01-10
down
wechat
bug