当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic Cavity Coupling
ACS Photonics ( IF 6.5 ) Pub Date : 2018-01-08 00:00:00 , DOI: 10.1021/acsphotonics.7b01139
James T. Hugall 1 , Anshuman Singh 1 , Niek F. van Hulst 1, 2
Affiliation  

The large losses of plasmonic nanocavities, orders of magnitude beyond those of photonic dielectric cavities, places them, perhaps surprisingly, as exceptional enhancers of single emitter light–matter interactions. The ultraconfined, sub-diffraction-limited mode volumes of plasmonic systems offer huge coupling strengths (in the 1–100 meV range) to single quantum emitters. Such strengths far outshine the coupling strengths of dielectric microcavities, which nonetheless easily achieve single emitter “strong coupling” due to the low loss rates of dielectric cavities. In fact, it is the much higher loss rate of plasmonic cavities that make them desirable for applications requiring bright, fast-emitting photon sources. Here we provide a simple method to reformulate lifetime measurements of single emitters in terms of coupling strengths to allow a useful comparison of the literature of plasmonic cavities with that of cavity-QED, typically more closely associated with dielectric cavities. Using this approach, we observe that the theoretical limit of coupling strength in plasmonic structures has almost been experimentally achieved with even single molecule strong coupling now observed in plasmonic systems. However, key problems remain to maximize the full potential of plasmonic cavities, including precise and deterministic nanopositioning of the emitter in the nanosized plasmonic mode volumes, understanding the best geometry for the plasmonic cavity, separating useful photons from background photons, and dealing with the fluorescence quenching problems of metals. Here we attempt to raise awareness of the benefits of plasmonic nanocavities for cavity-QED and tackle some of the potential pitfalls. We observe that there is increasing evidence that, by using correct geometries and improving emitter placement abilities, significant quenching can be avoided and photon output maximized toward the extraordinary limit provided by the high radiative rates of plasmonic nanocavities.

中文翻译:

等离子腔耦合

等离子体纳米腔的大量损失,其数量级超过光子介电腔的数量级,也许令人惊讶地将它们放置为单发射极光-质相互作用的出色增强剂。等离子体系统的超局限,亚衍射极限模式体积为单个量子发射器提供了巨大的耦合强度(在1–100 meV范围内)。这样的强度远远超过了电介质微腔的耦合强度,但由于电介质腔的低损耗率,它们仍然很容易实现单发射极“强耦合”。实际上,正是等离振子腔体的高损耗率使它们成为需要明亮,快速发射光子源的应用的理想选择。在这里,我们提供了一种简单的方法,可以根据耦合强度重新构造单个发射器的寿命测量值,以便对等离子腔与腔QED(通常与介电腔更紧密相关)的文献进行有用的比较。使用这种方法,我们观察到,等离子系统中偶合的单分子强耦合几乎已经通过实验达到了等离激元结构中耦合强度的理论极限。但是,要使等离子腔的全部潜力最大化,仍然存在一些关键问题,包括在纳米等离子模式体积中对发射器进行精确而确定的纳米定位,了解等离子腔的最佳几何形状,将有用的光子与背景光子分离以及处理荧光金属的淬火问题。在这里,我们试图提高人们对等离子体纳米腔对腔QED的好处的认识,并解决一些潜在的陷阱。我们观察到越来越多的证据表明,通过使用正确的几何形状并提高发射极放置能力,可以避免明显的猝灭,并且在高等离激元纳米腔辐射速率所提供的非正常极限下,光子输出可以最大化。
更新日期:2018-01-08
down
wechat
bug