当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage†
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2018-01-08 00:00:00 , DOI: 10.1039/c7ta09644e
Yu Zhang 1, 2, 3, 4, 5 , Tingting Qu 1, 2, 3, 4, 5 , Kun Xiang 1, 2, 3, 4, 5 , Yu Shen 1, 2, 3, 4, 5 , Shanyong Chen 1, 2, 3, 4, 5 , Mingjiang Xie 5, 6, 7, 8 , Xuefeng Guo 1, 2, 3, 4, 5
Affiliation  

Heteroatom doping is a very important approach to improve the performances of carbon-based electrode materials applied in the energy storage and conversion field. Herein, a strategy based on the design of faradaic redox active sites has been developed to synthesize nitrogen and oxygen co-doped carbon foam with a hierarchical porous structure. By a facile two-step method of incipient impregnation and carbonization, the quinone-amine polymer (PAQ) precursor can be in situ polymerized and carbonized on the surface of a nanosized MgO template to obtain carbon foam after removal of MgO with acetic acid. The obtained carbon foam possesses a high content of heteroatoms (total 12.26 at%) as well as faradaic active sites including nitrogen- and oxygen-containing functional groups, which not only enhance the wettability of the electrode material surface to electrolyte but also impart high pseudo-capacitance to the carbon-based skeleton. In addition, the hierarchical micro–meso–macro porous structure provides a large specific surface area (1215 m2 g−1) and a mediated pathway for electrolyte ion diffusion. Serving as a symmetric supercapacitor electrode material in aqueous electrolyte, the co-doped carbon foam yields excellent performance, delivering a high specific capacitance of 321 F g−1 at 1 A g−1, a superior energy density of 15.91 W h kg−1 at a power density of 0.4 kW kg−1, and excellent long-term stability, retaining 98% of its initial capacitance after 15 000 cycles at 5 A g−1.

中文翻译:

醌胺聚合物的原位形成/碳化为具有高法拉第活性的分层多孔碳泡沫,用于储能

杂原子掺杂是提高在能量存储和转换领域中应用的碳基电极材料性能的非常重要的方法。在此,已经开发了基于法拉第氧化还原活性位点设计的策略以合成具有分级多孔结构的氮和氧共掺杂的碳泡沫。通过简便的两步浸渍和碳化方法,醌胺聚合物(PAQ)前体可以原位形成在用乙酸除去MgO后,在纳米级MgO模板的表面上聚合并碳化以获得泡沫碳。所获得的碳泡沫具有高含量的杂原子(总量为12.26 at%),以及包括含氮和氧的官能团在内的法拉第活性位,不仅增强了电极材料表面对电解质的润湿性,而且还赋予了高假性。 -对碳基骨架的电容。此外,分层的微-中-宏多孔结构提供了较大的比表面积(1215 m 2 g -1)和电解质离子扩散的介导途径。作为水性电解质中的对称超级电容器电极材料,共掺杂碳泡沫具有出色的性能,在1 A g -1时可提供321 F g -1的高比电容,15.91 W h kg -1的出色能量密度在0.4 kW kg -1的功率密度下,具有出色的长期稳定性,在5 A g -1下进行15 000次循环后,仍保持其初始电容的98%。
更新日期:2018-01-08
down
wechat
bug