当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards high-efficiency sorptive capture of radionuclides in solution and gas
Progress in Materials Science ( IF 33.6 ) Pub Date : 2018-05-01 , DOI: 10.1016/j.pmatsci.2018.01.002
Kowsalya Vellingiri , Ki-Hyun Kim , Anastasia Pournara , Akash Deep

Abstract As globalization and rapid population growth have raised global energy needs, the demand for nuclear energy has increased drastically. To make use of such energy more reliably, the efficient disposal of nuclear wastes has become a major challenge. With this in mind, numerous research efforts have been put to safely store, capture, and immobilize radioactive waste. As a result, a variety of sorbent materials with different physical, chemical, and structural properties have been invented or discovered. The maximum removal capacity of these sorbents were then assessed for a variety of radionuclides in soluble and/or gaseous forms. The pre-/post-synthetic modification of these sorbent materials has also been investigated intensively to help enhance their overall stability, tunability, and capacity without altering or damaging the main framework. In this review, we explored the performance of different materials for the sorption of most important radionuclide species including uranium, cobalt, europium, iodine, cesium, strontium, technetium, krypton, xenon, and argon. To begin with, we classified sorbent materials into three categories in light of their structural evolvement over time. We also described the critical factors to consider for the proper application of these categorized sorbents (e.g., sorption properties, structural characteristics, reversibility, and renewability). Finally, we discussed briefly the present limitations and future prospects of these technologies.

中文翻译:

实现溶液和气体中放射性核素的高效吸附捕获

摘要 随着全球化和人口快速增长提高了全球能源需求,对核能的需求急剧增加。为了更可靠地利用这种能源,有效处理核废料已成为一项重大挑战。考虑到这一点,已经进行了大量研究工作以安全储存、捕获和固定放射性废物。因此,已经发明或发现了具有不同物理、化学和结构特性的多种吸附剂材料。然后评估了这些吸附剂对各种可溶性和/或气态放射性核素的最大去除能力。这些吸附剂材料的合成前/合成后改性也得到了深入研究,以帮助提高它们的整体稳定性、可调性、和容量,而不会改变或损坏主要框架。在这篇综述中,我们探讨了不同材料对包括铀、钴、铕、碘、铯、锶、锝、氪、氙和氩在内的最重要放射性核素种类的吸附性能。首先,我们根据吸附材料随时间的结构演变将其分为三类。我们还描述了正确应用这些分类吸附剂时需要考虑的关键因素(例如,吸附特性、结构特征、可逆性和可再生性)。最后,我们简要讨论了这些技术目前的局限性和未来前景。铕、碘、铯、锶、锝、氪、氙和氩。首先,我们根据吸附材料随时间的结构演变将其分为三类。我们还描述了正确应用这些分类吸附剂时需要考虑的关键因素(例如,吸附特性、结构特征、可逆性和可再生性)。最后,我们简要讨论了这些技术目前的局限性和未来前景。铕、碘、铯、锶、锝、氪、氙和氩。首先,我们根据吸附材料随时间的结构演变将其分为三类。我们还描述了正确应用这些分类吸附剂时需要考虑的关键因素(例如,吸附特性、结构特征、可逆性和可再生性)。最后,我们简要讨论了这些技术目前的局限性和未来前景。可逆性和可再生性)。最后,我们简要讨论了这些技术目前的局限性和未来前景。可逆性和可再生性)。最后,我们简要讨论了这些技术目前的局限性和未来前景。
更新日期:2018-05-01
down
wechat
bug