当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ induced core/shell stabilized hybrid perovskites via gallium(iii) acetylacetonate intermediate towards highly efficient and stable solar cells†
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2018-01-05 00:00:00 , DOI: 10.1039/c7ee03113k
Wenzhe Li 1, 2, 3, 4, 5 , Cuiling Zhang 5, 6, 7, 8, 9 , Yunping Ma 5, 6, 7, 8, 9 , Chong Liu 1, 2, 3, 4, 5 , Jiandong Fan 1, 2, 3, 4, 5 , Yaohua Mai 1, 2, 3, 4, 5 , Ruud E. I. Schropp 10, 11, 12, 13
Affiliation  

Long-term stability of perovskite solar cells appears to be the bottleneck that limits its large-scale industrialization. Herein, we innovatively introduce gallium(III) acetylacetonate (GaAA3) as the precursor additive to in situ induce a metal–organic-complex monomolecular intermediate ([GaAA3]4), which allows to realize CsxFA1−xPbI3–[GaAA3]4 (0 < x < 1) hybrid perovskite materials. The formed hybrid perovskites are proven to possess a thus far unreported structure with CsxFA1−xPbI3 core and [GaAA3]4 shell, and the presence of thin [GaAA3]4 shells remarkably enhances the hydrophobicity of the perovskite thin films. As a result of an effective passivation effect by the core/shell heterostructure, the formed perovskites demonstrate superior photoelectronic performance in comparison with the independent archetype 3-dimensional (3D) counterparts, e.g., they show low defect-state density, strong luminescence, and long lifetime of photo-generation charge carriers, which finally result in a high power conversion efficiency of 18.24% for core–shell planar perovskite solar cells. Equally important, the stabilized power output (SPO) of the unencapsulated cell remains over 18% for 5 h in an adverse atmosphere with 50% relative humidity (RH). The present study provides a facile approach to fabricate core–shell perovskite solar cells with high efficiency and long-term stability against moisture.

中文翻译:

通过乙酰丙酮镓(iii原位诱导的核/壳稳定杂化钙钛矿形成高效,稳定的太阳能电池

钙钛矿太阳能电池的长期稳定性似乎是限制其大规模工业化的瓶颈。在这里,我们创新地引入乙酰丙酮镓(III)(GaAA 3)作为前体添加剂,以原位诱导金属-有机复合单分子中间体([GaAA 3 ] 4),从而实现Cs x FA 1− x PbI 3。 – [GaAA 3 ] 4(0 < x <1)混合钙钛矿材料。已证明形成的杂化钙钛矿具有迄今未报道的Cs x FA 1- x结构碘化铅3芯和[GAAA 3 ] 4的外壳,以及薄[GAAA的存在3 ] 4种壳显着提高钙钛矿薄膜的疏水性。作为由核/壳异质结构的有效的钝化效果的结果,所形成的钙钛矿表明在与独立原型3维(3D)对应,比较优越光电性能例如,它们显示出低的缺陷态密度,强的发光性以及光生电荷载流子的使用寿命长,最终导致核-壳平面钙钛矿太阳能电池的功率转换效率高达18.24%。同样重要的是,未封装电池的稳定功率输出(SPO)在相对湿度(RH)为50%的不利气氛中保持5小时以上超过18%。本研究提供了一种简便的方法来制造具有高效率和长期防潮稳定性的核-壳钙钛矿太阳能电池。
更新日期:2018-01-05
down
wechat
bug