当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
Nature Reviews Materials ( IF 83.5 ) Pub Date : 2018-01-04 , DOI: 10.1038/natrevmats.2017.88
Francesco Casola , Toeno van der Sar , Amir Yacoby

The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor–sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.



中文翻译:

基于金刚石中氮空位中心的磁力计探测凝聚态物理

自旋和电流产生的磁场为进入相关电子材料和器件的物理学提供了一个独特的窗口。仅仅在十年前首次提出,基于金刚石中氮空位(NV)缺陷电子自旋的磁力计正在发展成为非常适合于探测凝聚态系统的平台。它可以在低温到室温以上的温度范围内工作,动态范围从直流到千兆赫兹不等,传感器到样品的距离小至几纳米。因此,NV磁力测量技术可以访问具有纳米级空间分辨率的静态和动态磁和电子现象。开拓性工作的重点是其纳米级成像分辨率和磁场灵敏度的原理证明。现在,实验开始探索磁体和超导体的相关电子物理,并探索低维材料中的电流分布。在这篇综述中,我们讨论了NV磁法学在凝聚态物理探索中的应用,重点是将其用于研究静态和动态磁性结构以及静态和动态电流分布。

更新日期:2018-01-05
down
wechat
bug