当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Investigation of Supercritical Combustion of H2–O2
Energy & Fuels ( IF 5.3 ) Pub Date : 2018-01-04 00:00:00 , DOI: 10.1021/acs.energyfuels.7b03025
A. Mardani 1 , E. Barani 1
Affiliation  

This study investigates GH2/LOX coaxial jet flame at trans- and supercritical conditions using the Reynolds averaged Navier–Stokes approach. Four two-equation-turbulence models, three real equation of states, two chemical mechanisms, and three different chamber pressures are examined. Predictions show good agreement with measurements qualitatively and quantitatively. Based on the results, the predictions of the Soave–Redlich–Kwong equation of state (EOS) are closer to the experiment, while the Aungier–Redlich–Kwong EOS has more deviation than the others. Moreover, the k–ω shear stress transport model has better performance than the other turbulence models. It is also found that the flow field is controlled by two vortices which resulted from extreme expansion of the oxygen dense core and high velocity of inlet gaseous hydrogen into the chamber. The chamber pressure increment delays transcritical conditions and also increases flame length and the length of the secondary vortex and decreases the expansion zone. Furthermore, the two detailed chemical mechanisms of Burke and Konnov had a similar result.

中文翻译:

H 2 -O 2超临界燃烧的数值研究

这项研究使用雷诺平均Navier–Stokes方法研究了跨临界和超临界条件下的GH 2 / LOX同轴射流火焰。考察了四个二方程湍流模型,三个真实状态方程,两个化学机理以及三个不同的腔室压力。预测显示定性和定量与测量结果吻合良好。根据结果​​,Soave-Redlich-Kwong状态方程(EOS)的预测更接近于实验,而Aungier-Redlich-Kwong EOS的预测偏差更大。而且,k–ω剪切应力传递模型比其他湍流模型具有更好的性能。还发现,流场由两个涡流控制,这两个涡流是由氧致密核的极度膨胀和进入腔室内的气态氢的高速流动引起的。腔室压力的增加延迟了跨临界条件,并且还增加了火焰长度和次级涡旋的长度,并减小了膨胀区。此外,伯克(Burke)和康诺夫(Konnov)的两种详细的化学机理也有相似的结果。
更新日期:2018-01-04
down
wechat
bug