当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Periodically Self‐Pulsating Microcapsule as Programmed Microseparator via ATP‐Regulated Energy Dissipation
Advanced Science ( IF 14.3 ) Pub Date : 2018-01-04 , DOI: 10.1002/advs.201700591
Xiang Hao 1 , Liang Chen 1 , Wei Sang 1 , Qiang Yan 1
Affiliation  

Living systems can experience time‐dependent dynamic self‐assembly for periodic, adaptive behavior via energy dissipation pathway. Creating in vitro mimics is a daunting mission. Here a “living” giant vesicle system that can perform a periodic pulsating motion using adenosine‐5'‐triphosphate (ATP)‐fuelled dissipative self‐assembly is described. This dynamic system is built on transient supramolecular interactions between the polymer and cellular energy currency ATP. The vesicles capturing ATPs will deviate away from equilibrium, leading to an energy ascent that drives a continuous vesicular expansion, until a competitive ATP hydrolysis predominates to break the ATP–polymer interactions and deplete the energy stored in the vesicles, leading to an opposing vesicular contraction. The input of ATP energy can sustain that these vesicles run periodically along this reciprocating expansile–contractile process, resembling a “pulsating” behavior. ATP level can orchestrate the rhythm, amplitude, and lifetime of this biomimetic pulsation. By pre‐programming the ATP stimulation protocol, this kind of adaptive microcapsules can function as high‐performance microseparators to perform size‐selective sieving of different nanoparticles through ATP‐mediated transmembrane traffic. This man‐made system offers a primitive model of time‐dependent dynamic self‐assembly and may offer new ways to build life‐like materials with biomimetic functions.

中文翻译:


通过 ATP 调节能量耗散周期性自脉动微胶囊作为程序化微分离器



生命系统可以通过能量耗散途径经历依赖于时间的动态自组装,以实现周期性的自适应行为。创建体外模拟物是一项艰巨的任务。这里描述了一种“活的”巨型囊泡系统,它可以使用腺苷-5'-三磷酸(ATP)驱动的耗散自组装来执行周期性脉动运动。该动态系统建立在聚合物和细胞能量货币 ATP 之间的瞬态超分子相互作用之上。捕获 ATP 的囊泡将偏离平衡,导致能量上升,从而驱动囊泡持续扩张,直到竞争性 ATP 水解占主导地位,打破 ATP-聚合物相互作用并耗尽囊泡中存储的能量,导致相反的囊泡收缩。 ATP能量的输入可以维持这些囊泡沿着这种往复的膨胀-收缩过程周期性地运行,类似于“脉动”行为。 ATP 水平可以协调这种仿生脉动的节奏、幅度和寿命。通过预先编程 ATP 刺激方案,这种自适应微胶囊可以充当高性能微分离器,通过 ATP 介导的跨膜交通对不同纳米颗粒进行尺寸选择性筛分。这种人造系统提供了时间依赖性动态自组装的原始模型,并可能提供构建具有仿生功能的逼真材料的新方法。
更新日期:2018-01-04
down
wechat
bug