当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly(arylene ether)/graphene oxide grafted with flexible alkylsulfonated side chains nanocomposite membranes
Journal of Power Sources ( IF 9.2 ) Pub Date : 2018-01-04 , DOI: 10.1016/j.jpowsour.2017.12.057
Dong Liu , Jinhua Peng , Zhuoyao Li , Bin Liu , Lei Wang

Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm−1 at 80 °C) and lower methanol permeability (4.89 × 10−7 cm2 s−1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm−2) than the pristine membrane (67.85 mW cm−2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.



中文翻译:

柔性烷基磺化侧链纳米复合膜接枝的高度支化的磺化聚亚芳基醚/氧化石墨烯的机械性能,质子电导率和耐甲醇性的改善

磺化的聚合物/氧化石墨烯(GO)纳米复合材料具有质子交换膜的优异性能。然而,关于质子交换膜高度支化的磺化聚亚芳基醚(HBSPE)/ GO纳米复合材料的研究很少。为了获得具有更好分散性和性能的基于HBSPE的纳米复合膜,本工作中首次设计并制备了一种新型的含柔性烷基磺化侧链的GO(SGO)。成功制备了具有优异分散性的HBSPE / SGO纳米复合膜。表征了这些膜的性质,包括机械性质,离子交换容量,吸水率,质子传导率和耐甲醇性。纳米复合膜表现出更高的拉伸强度(32.67 MPa),更高的质子传导率(0。在80°C时为-1),甲醇渗透率(4.89×10 -7  cm 2  s -1)低于原始膜。在单电池直接甲醇燃料电池(DMFC)测试中,纳米复合膜还比原始膜(67.85 mW cm -2)获得了更高的最大功率密度(82.36 mW cm -2),证明了它们在DMFC中的巨大应用潜力。

更新日期:2018-01-04
down
wechat
bug