当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.3 ) Pub Date : 2018-01-04 , DOI: 10.1016/j.jmbbm.2017.12.029
R. Hedayati , S.M. Ahmadi , K. Lietaert , B. Pouran , Y. Li , H. Weinans , C.D. Rans , A.A. Zadpoor

In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type.



中文翻译:

拓扑和材料类型对增材制造的多孔生物材料的机械性能的隔离和调制影响

在这项研究中,我们试图量化拓扑设计和材料类型对AM多孔生物材料的机械性能的孤立和调制的影响。为了实现这一目标,我们组装了一个大型数据集,其中包含具有不同拓扑设计(即,不同的晶胞类型和相对密度)和材料类型的AM多孔生物材料的机械性能。使用选择性激光熔化(SLM)机从Co-Cr增材制造了多孔结构,并在准静态压缩下进行了测试。从这些结构获得的归一化机械性能与我们以前对Ti-6Al-4V和纯钛制成的多孔结构的机械性能以及分析溶液进行了比较。发现弹性模量和屈服应力的归一化值彼此相对接近,并且与分析溶液一致,而与材料类型无关。然而,发现材料类型总体上系统地影响AM多孔生物材料的机械性能,尤其是后弹性/后屈服范围(平台应力和能量吸收能力)。为了更好地理解这一点,拓扑设计可能会导致AM多孔生物材料的机械性能发生多达10倍的差异,而由于改变材料类型而导致的差异高达2倍。发现材料类型通常会系统地影响AM多孔生物材料的机械性能,尤其是后弹性/后屈服范围(平台应力和能量吸收能力)。为了更好地理解这一点,拓扑设计可能会导致AM多孔生物材料的机械性能发生多达10倍的差异,而由于更改材料类型而引起的观察结果却出现了高达2倍的差异。发现材料类型通常会系统地影响AM多孔生物材料的机械性能,尤其是后弹性/后屈服范围(平台应力和能量吸收能力)。为了更好地理解这一点,拓扑设计可能会导致AM多孔生物材料的机械性能发生多达10倍的差异,而由于更改材料类型而引起的观察结果却出现了高达2倍的差异。

更新日期:2018-01-04
down
wechat
bug