当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hot kinetic model as a guide to improve organic photovoltaic materials†
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2018-01-04 00:00:00 , DOI: 10.1039/c7cp06158g
Andrey Yu. Sosorev 1, 2, 3, 4 , Dmitry Yu. Godovsky 4, 5, 6, 7 , Dmitry Yu. Paraschuk 1, 2, 3, 4, 8
Affiliation  

The modeling of organic solar cells (OSCs) can provide a roadmap for their further improvement. Many OSC models have been proposed in recent years; however, the impact of the key intermediates from photons to electricity—hot charge-transfer (CT) states—on the OSC efficiency is highly ambiguous. In this study, we suggest an analytical kinetic model for OSC that considers a two-step charge generation via hot CT states. This hot kinetic model allowed us to evaluate the impact of different material parameters on the OSC performance: the driving force for charge separation, optical bandgap, charge mobility, geminate recombination rate, thermalization rate, average electron–hole separation distance in the CT state, dielectric permittivity, reorganization energy and charge delocalization. In contrast to a widespread trend of lowering the material bandgap, the model predicts that this approach is only efficient along with improvement of the other material properties. The most promising ways to increase the OSC performance are decreasing the reorganization energy, i.e., an energy change accompanying CT from the donor molecule to the acceptor, increasing the dielectric permittivity and charge delocalization. The model suggests that there are no fundamental limitations that can prevent achieving the OSC efficiency above 20%.

中文翻译:

热动力学模型作为改进有机光伏材料的指南

有机太阳能电池(OSC)的建模可以为其进一步改进提供路线图。近年来,已经提出了许多OSC模型。但是,从光子到电的关键中间产物(热电荷转移(CT)状态)对OSC效率的影响非常模糊。在这项研究中,我们提出了OSC的分析动力学模型,该模型考虑了通过CT处于热状态。这个热动力学模型使我们能够评估不同材料参数对OSC性能的影响:电荷分离的驱动力,光学带隙,电荷迁移率,双键复合率,热化率,在CT状态下的平均电子-空穴分离距离,介电常数,重组能量和电荷离域。与降低材料带隙的普遍趋势相反,该模型预测该方法仅在提高其他材料性能的同时有效。提高OSC性能的最有希望的方法是降低重组能量,,伴随着CT从供体分子到受体的能量变化,增加了介电常数和电荷离域。该模型表明,没有任何基本限制可以阻止OSC效率达到20%以上。
更新日期:2018-01-04
down
wechat
bug