当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced bending-tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrates†
Materials Horizons ( IF 12.2 ) Pub Date : 2018-01-03 00:00:00 , DOI: 10.1039/c7mh00939a
Lvkang Shen 1, 2, 3, 4, 5 , Ming Liu 1, 2, 3, 4, 5 , Chunrui Ma 2, 3, 4, 5 , Lu Lu 1, 2, 3, 4, 5 , Huarui Fu 4, 6, 7, 8 , Caiyin You 4, 6, 7, 8 , Xiaoli Lu 1, 9, 10, 11, 12 , Chun-Lin Jia 1, 2, 3, 4, 5
Affiliation  

Herein, large-scale epitaxial (111) CoFe2O4 nanopillar arrays with an average nanopillar diameter of ∼40–60 nm and thicknesses of 26–700 nm have been obtained on flexible fluorophlogopite substrates by chemically etching the vertically aligned self-assembled CoFe2O4:MgO nanocomposite thin films. The chemical etching process has not affected the crystalline quality of the CoFe2O4 phase, but results in volume shrinkage through the removal of the surrounding MgO phase. Compared with the planar CoFe2O4 films, the nanopillar arrays show sharply declined coercivity and enhanced saturation magnetization. Even the thinnest nanoisland-shaped arrays (∼26 nm) retain a relatively high saturation magnetization (∼90 emu cc−1), nonzero coercivity (∼250 Oe), and remanence (∼30 emu cc−1), which are promising for the requirements of weak ferromagnetism in flexible devices. With an increase in the bending radius, a strong and monotonous increase in saturation/remanent magnetization has been found in the nanopillar arrays. This reveals that the bending-induced shape anisotropy as well as the intrinsic magnetocrystalline anisotropy mainly dominate the tunable magnetic properties in the CoFe2O4 nanopillar arrays. With strong bending, the increment of remanent magnetization in the nanopillar arrays can be as high as 98%, exhibiting the huge potential of these nanopillar arrays in future applications such as in bending sensors and related devices.

中文翻译:

柔性基板上的外延钴铁氧体纳米柱阵列中增强的弯曲调谐磁性能

在此,通过化学刻蚀垂直排列的自组装CoFe,在柔性氟金云母基板上获得了平均纳米柱直径约为40-60 nm,厚度为26-700 nm的大规模外延(111)CoFe 2 O 4纳米柱阵列。2 O 4:MgO纳米复合薄膜。化学蚀刻工艺并未影响CoFe 2 O 4相的晶体质量,但是会通过去除周围的MgO相而导致体积收缩。与平面CoFe 2 O 4相比薄膜,纳米柱阵列显示矫顽力急剧下降,饱和磁化强度增强。即使是最薄的纳米岛形阵列(〜26 nm)也保留了相对较高的饱和磁化强度(〜90 emu cc -1),非零矫顽力(〜250 Oe)和剩磁(〜30 emu cc -1),这有望实现柔性设备中弱铁磁性的要求。随着弯曲半径的增加,在纳米柱阵列中已经发现饱和/剩余磁化强度的强烈单调增加。这表明,弯曲引起的形状各向异性以及固有的磁晶各向异性主要控制着CoFe 2 O 4中的可调磁性能。纳米柱阵列。通过强弯曲,纳米柱阵列中的剩余磁化增量可高达98%,在未来的应用(例如弯曲传感器和相关设备)中展现出这些纳米柱阵列的巨大潜力。
更新日期:2018-01-03
down
wechat
bug