当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self‐Assembled Biomolecular 1D Nanostructures for Aqueous Sodium‐Ion Battery
Advanced Science ( IF 15.1 ) Pub Date : 2018-01-03 , DOI: 10.1002/advs.201700634
Huiwu Long 1 , Wen Zeng 1 , Hua Wang 2 , Mengmeng Qian 2 , Yanhong Liang 3 , Zhongchang Wang 4
Affiliation  

Aqueous sodium‐ion battery of low cost, inherent safety, and environmental benignity holds substantial promise for new‐generation energy storage applications. However, the narrow potential window of water and the enlarged ionic radius because of hydration restrict the selection of electrode materials used in the aqueous electrolyte. Here, inspired by the efficient redox reaction of biomolecules during cellular energy metabolism, a proof of concept is proposed that the redox‐active biomolecule alizarin can act as a novel electrode material for the aqueous sodium‐ion battery. It is demonstrated that the specific capacity of the self‐assembled alizarin nanowires can reach as high as 233.1 mA h g−1, surpassing the majority of anodes ever utilized in the aqueous sodium‐ion batteries. Paired with biocompatible and biodegradable polypyrrole, this full battery system shows excellent sodium storage ability and flexibility, indicating its potential applications in wearable electronics and biointegrated devices. It is also shown that the electrochemical properties of electrodes can be tailored by manipulating naturally occurring 9,10‐anthroquinones with various substituent groups, which broadens application prospect of biomolecules in aqueous sodium‐ion batteries.

中文翻译:

钠离子电池自组装生物分子一维纳米结构

低成本,固有安全性和环境友好性的钠离子水电池在新一代储能应用中具有广阔的前景。然而,由于水合作用,水的电势窗口窄并且离子半径增大,这限制了在水性电解质中使用的电极材料的选择。在此,受细胞能量代谢过程中生物分子有效的氧化还原反应的启发,有人提出了概念证明,即具有氧化还原活性的生物分子茜素可以作为钠离子电池水溶液的新型电极材料。结果表明,自组装茜素纳米线的比容量可高达233.1 mA hg -1,超过了钠离子电池中使用过的大多数阳极。与生物相容性和可生物降解的聚吡咯配合使用,这种完整的电池系统显示出出色的钠存储能力和柔韧性,表明其在可穿戴电子产品和生物集成设备中的潜在应用。研究还表明,可以通过操纵带有各种取代基的天然存在的9,10-蒽醌来调整电极的电化学性能,从而拓宽了生物分子在水性钠离子电池中的应用前景。
更新日期:2018-01-03
down
wechat
bug