当前位置: X-MOL 学术J. Electroanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the preparation and production factors of a direct lignocellulose biomass fuel cell
Journal of Electroanalytical Chemistry ( IF 4.1 ) Pub Date : 2018-02-01 , DOI: 10.1016/j.jelechem.2017.12.085
Shengyan Li , Xianliang Song

Abstract Lignocellulosic biomass is the most abundant renewable resource in nature. However, low-temperature fuel cell technology has not yet been able to use it as an efficient fuel. In this research study, a low temperature direct biomass fuel cell, which did not use enzymes or microorganisms as catalysts, was demonstrated using barley straw as the fuel, methyl violet as an electron mediator, nickel foam as an anode, and carbon cloth supported 0.15 mg/cm2 of 10 wt% Pt/C doping graphene as a cathode. The effects of the particle sizes of the raw materials on the performance of the fuel cell were examined using 3% (w/v) different particle sizes of barley straw powder in 5 M NaOH and 0.02 M MV solutions. It was found that the smaller the particle size of barley straw powder was, the higher the electrochemical performance of the fuel cell would be. In addition, this study also examined the effects of several dissolution systems on the electrochemical performance of the fuel cell, including a 10 wt% LiCl/DMAC, 5 M NaOH, 7 wt% NaOH/12 wt% Urea, and 65 wt% ZnCl2. It was found that the fuel cell in the 65 wt% ZnCl2 solvent had the best electrochemical performance, and when the MV concentration increased, the electrochemical performance of the fuel cell also increased accordingly. The maximum power density of the fuel cell reached to 0.3 mW/cm2 when the concentration of MV increased to 0.08 M, which was nearly 40 times higher than the microbial fuel cells fed with cellulose. Meanwhile, the open circuit voltage was 541 mV, and the limit current density was 0.3 mA/cm2. This allowed the raw materials of the fuel cell to take a further step toward a more complex lignocellulosic biomass.

中文翻译:

直接木质纤维素生物质燃料电池的制备及生产因素研究

摘要 木质纤维素生物质是自然界中最丰富的可再生资源。然而,低温燃料电池技术还没有能够将其用作高效燃料。在这项研究中,以大麦秸秆为燃料,甲基紫为电子介体,镍泡沫为阳极,碳布负载 0.15 mg/cm2 的 10 wt% Pt/C 掺杂石墨烯作为阴极。使用 3% (w/v) 不同粒径的大麦秸秆粉在 5 M NaOH 和 0.02 M MV 溶液中检测原料粒径对燃料电池性能的影响。发现大麦秸秆粉的粒径越小,燃料电池的电化学性能越高。此外,本研究还研究了几种溶解系统对燃料电池电化学性能的影响,包括 10 wt% LiCl/DMAC、5 M NaOH、7 wt% NaOH/12 wt% 尿素和 65 wt% ZnCl2 . 发现在65 wt% ZnCl2溶剂中的燃料电池电化学性能最好,当MV浓度增加时,燃料电池的电化学性能也相应提高。当 MV 浓度增加到 0.08 M 时,燃料电池的最大功率密度达到 0.3 mW/cm2,比用纤维素喂养的微生物燃料电池高出近 40 倍。同时,开路电压为541 mV,极限电流密度为0.3 mA/cm2。这使得燃料电池的原材料朝着更复杂的木质纤维素生物质迈进了一步。该研究还检查了几种溶解系统对燃料电池电化学性能的影响,包括 10 wt% LiCl/DMAC、5 M NaOH、7 wt% NaOH/12 wt% 尿素和 65 wt% ZnCl2。发现在65 wt% ZnCl2溶剂中的燃料电池电化学性能最好,当MV浓度增加时,燃料电池的电化学性能也相应提高。当 MV 浓度增加到 0.08 M 时,燃料电池的最大功率密度达到 0.3 mW/cm2,比用纤维素喂养的微生物燃料电池高出近 40 倍。同时,开路电压为541 mV,极限电流密度为0.3 mA/cm2。这使得燃料电池的原材料朝着更复杂的木质纤维素生物质迈进了一步。该研究还检查了几种溶解系统对燃料电池电化学性能的影响,包括 10 wt% LiCl/DMAC、5 M NaOH、7 wt% NaOH/12 wt% 尿素和 65 wt% ZnCl2。发现在65 wt% ZnCl2溶剂中的燃料电池电化学性能最好,当MV浓度增加时,燃料电池的电化学性能也相应提高。当 MV 浓度增加到 0.08 M 时,燃料电池的最大功率密度达到 0.3 mW/cm2,比用纤维素喂养的微生物燃料电池高出近 40 倍。同时,开路电压为541 mV,极限电流密度为0.3 mA/cm2。这使得燃料电池的原材料朝着更复杂的木质纤维素生物质迈进了一步。
更新日期:2018-02-01
down
wechat
bug