当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface‐Coating‐Mediated Electrochemical Performance in CuO Nanowires during the Sodiation–Desodiation Cycling
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2018-01-02 , DOI: 10.1002/admi.201701255
Huihui Liu 1 , He Zheng 1 , Lei Li 1 , Shuangfeng Jia 1 , Shuang Meng 1 , Fan Cao 1 , Yinghao Lv 1 , Dongshan Zhao 1 , Jianbo Wang 1, 2
Affiliation  

The rate performance and cycling numbers of CuO‐based sodium‐ion batteries (SIBs) suffer from large volume change and the poor conductivity during the ion transportation process. Herein, it is found that the surface coating with C and Au could effectively constrain the nanowire (NW) elongation rate along the 〈110〉 growth direction as well as increase the electrochemical reaction speed, which result in the improved cycling performance. Additionally, the in situ transmission electron microscopy observation of sodiation–desodiation cycling in coated CuO NWs indicates the detailed electrochemical reaction pathways, whereas the CuO shows the irreversible reaction scheme: transform to Cu during the sodiation while CuO and Cu2O coexist after desodiation. The irreversibility contributes to the capacity loss in CuO‐based SIBs. In contrast, the fully reversible Na+ insertion and extraction in Au suggest that Au could be an effective material for Na+ storage. Based on the real‐time experimental observations, these results reveal the vital role of surface coating in affecting the electrochemical performance of CuO, which may also provide insight into the behavior of other transition oxide electrode materials.

中文翻译:

CuO纳米线的表面-涂层-介导的电化学-电离循环过程中的电化学性能

基于CuO的钠离子电池(SIB)的速率性能和循环次数受离子传输过程中体积变化大和导电性差的困扰。在这里,发现用C和Au的表面涂层可以有效地限制沿< 110>生长方向的纳米线(NW)伸长率,并且提高了电化学反应速度,从而改善了循环性能。此外,原位透射电子显微镜观察涂覆的CuO NWs中的消解-消解循环表明了详细的电化学反应路径,而CuO显示了不可逆的反应方案:在电镀过程中转变为Cu,而CuO和Cu 2灭绝后并存。不可逆性导致基于CuO的SIB的容量损失。相反,Au中完全可逆的Na +插入和萃取表明Au可能是Na +储存的有效材料。基于实时实验观察,这些结果揭示了表面涂层在影响CuO电化学性能方面的重要作用,这也可能提供对其他过渡氧化物电极材料行为的洞察力。
更新日期:2018-01-02
down
wechat
bug