当前位置: X-MOL 学术Remote Sens. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantifying the relative contributions of vegetation and soil moisture conditions to polarimetric C-Band SAR response in a temperate peatland
Remote Sensing of Environment ( IF 13.5 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.rse.2017.12.011
Koreen Millard , Murray Richardson

Abstract Effective modeling of many hydrological and climatological processes requires accurate spatial characterization of soil moisture, often over large regions and across different spatial scales. Synthetic Aperture Radar (SAR) has been shown to be sensitive to surface soil moisture, and is therefore a promising alternative to field data campaigns. However, the presence of spatially-variable vegetation and surface roughness also affect SAR backscatter. In this research, empirical models were developed to both predict soil moisture from SAR and assess the relationship between LiDAR-derived vegetation and surface conditions, and polarimetric SAR parameters in a vegetated peatland environment. Importantly, the low predictive strength of soil moisture models was only evident through a process of model cross-validation (bivariate regression R2 ranged from 0.14 to 0.66 for fitted models and 0.05 to 0.41 for independently cross-validated models). The LiDAR-derived vegetation density was found to explain a large amount of variance in the SAR data, and models to predict soil moisture from SAR from only the least vegetated sites within the peatland demonstrated much higher predictive strength (R2 = 0.11 to 0.71). Soil moisture within the vegetated and least-vegetated sites was not significantly different. Therefore, non-vegetated areas may be useful as representative imaging locations for remotely monitoring surface moisture conditions in large peatland complexes with heterogeneous vegetation.

中文翻译:

量化植被和土壤水分条件对温带泥炭地极化 C 波段 SAR 响应的相对贡献

摘要 许多水文和气候过程的有效建模需要对土壤水分进行准确的空间表征,通常是在大区域和不同空间尺度上。合成孔径雷达 (SAR) 已被证明对地表土壤水分敏感,因此是现场数据活动的有前途的替代方案。然而,空间变化的植被和表面粗糙度的存在也会影响 SAR 后向散射。在这项研究中,开发了经验模型,既可以根据 SAR 预测土壤水分,也可以评估 LiDAR 衍生的植被与地表条件之间的关系,以及植被泥炭地环境中的极化 SAR 参数。重要的,土壤水分模型的低预测强度仅通过模型交叉验证过程(双变量回归 R2 拟合模型的范围为 0.14 至 0.66,独立交叉验证模型的范围为 0.05 至 0.41)才明显。发现 LiDAR 衍生的植被密度可以解释 SAR 数据中的大量差异,并且仅从泥炭地内植被最少的地点根据 SAR 预测土壤水分的模型显示出更高的预测强度(R2 = 0.11 至 0.71)。植被和最少植被地区的土壤水分没有显着差异。因此,无植被区域可用作远程监测具有异质植被的大型泥炭地复合体的表面水分条件的代表性成像位置。41 对于独立交叉验证的模型)。发现 LiDAR 衍生的植被密度可以解释 SAR 数据中的大量差异,并且仅从泥炭地内植被最少的地点根据 SAR 预测土壤水分的模型显示出更高的预测强度(R2 = 0.11 至 0.71)。植被和最少植被地区的土壤水分没有显着差异。因此,无植被区域可用作远程监测具有异质植被的大型泥炭地复合体的表面水分条件的代表性成像位置。41 对于独立交叉验证的模型)。发现 LiDAR 衍生的植被密度可以解释 SAR 数据中的大量差异,并且仅从泥炭地内植被最少的地点根据 SAR 预测土壤水分的模型显示出更高的预测强度(R2 = 0.11 至 0.71)。植被和最少植被地区的土壤水分没有显着差异。因此,无植被区域可用作远程监测具有异质植被的大型泥炭地复合体的表面水分条件的代表性成像位置。仅从泥炭地内植被最少的地点根据 SAR 预测土壤水分的模型显示出更高的预测强度(R2 = 0.11 至 0.71)。植被和最少植被地区的土壤水分没有显着差异。因此,无植被区域可用作远程监测具有异质植被的大型泥炭地复合体的表面水分条件的代表性成像位置。仅从泥炭地内植被最少的地点根据 SAR 预测土壤水分的模型显示出更高的预测强度(R2 = 0.11 至 0.71)。植被和最少植被地区的土壤水分没有显着差异。因此,无植被区域可用作远程监测具有异质植被的大型泥炭地复合体的表面水分条件的代表性成像位置。
更新日期:2018-03-01
down
wechat
bug