当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy Dissipation in Fluid Coupled Nanoresonators: The Effect of Phonon-Fluid Coupling
ACS Nano ( IF 15.8 ) Pub Date : 2018-01-10 00:00:00 , DOI: 10.1021/acsnano.7b06469
Subhadeep De 1 , Narayana R. Aluru 1
Affiliation  

Resonant nanomechanical systems find numerous sensing applications both in the vacuum and in the fluid environment but their performance is degraded by different dissipation mechanisms. In this work, we study dissipation mechanisms associated with high frequency axial excitation of a single-walled carbon nanotube (CNT) filled with argon, which is a representative fluid coupled resonator system. By performing molecular dynamics simulations, we identify two dissipative processes associated with the axial excitation of the resonator: (i) perturbation of the resonator phonons and their relaxation and (ii) oscillatory fluid flow developed by the resonator motion. Dissipation due to the first process, a form of “intrinsic” dissipation, is found to be governed by the Akhiezer mechanism and is verified for an empty CNT in vacuum. To estimate the dissipation due to the second process, which is the conventional “fluid” dissipation, we formulate an approach based on the response of the hydrodynamic force on the resonator. Our analysis of the coupled system reveals that phonon relaxations associated with the Akhiezer dissipation are significantly modified in the presence of fluidic interactions, which have been ignored in all previous dissipation studies of fluid-resonator systems. We show that an important consequence of this phonon-fluid interaction is inverse scaling of dissipation with density at low excitation frequencies.

中文翻译:

流体耦合纳米谐振器中的能量耗散:声子-流体耦合的影响

共振纳米机械系统在真空和流体环境中都有大量的传感应用,但是它们的性能会因不同的耗散机制而降低。在这项工作中,我们研究与填充有氩气的单壁碳纳米管(CNT)的高频轴向激励相关的耗散机制,这是一种典型的流体耦合谐振器系统。通过执行分子动力学模拟,我们确定了与谐振器轴向激励相关的两个耗散过程:(i)谐振器声子的扰动及其弛豫,以及(ii)由谐振器运动产生的振荡流体流。发现由于第一个过程而产生的耗散是“本征”耗散,这是由Akhiezer机制控制的,并已针对真空中的空CNT进行了验证。为了估算由于第二个过程而产生的耗散,这是常规的“流体”耗散,我们根据流体动力对谐振器的响应来制定一种方法。我们对耦合系统的分析表明,在存在流体相互作用的情况下,与Akhiezer耗散有关的声子弛豫得到了显着改善,在流体谐振器系统的所有以前的耗散研究中都忽略了这一点。我们表明,这种声子-流体相互作用的重要结果是在低激发频率下,密度的耗散成反比。我们对耦合系统的分析表明,在存在流体相互作用的情况下,与Akhiezer耗散有关的声子弛豫得到了显着改善,在流体谐振器系统的所有以前的耗散研究中都忽略了这一点。我们表明,这种声子-流体相互作用的重要结果是在低激发频率下,密度的耗散成反比。我们对耦合系统的分析表明,在存在流体相互作用的情况下,与Akhiezer耗散有关的声子弛豫得到了显着改善,在流体谐振器系统的所有以前的耗散研究中都忽略了这一点。我们表明,这种声子-流体相互作用的重要结果是在低激发频率下,密度的耗散成反比。
更新日期:2018-01-10
down
wechat
bug