当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2017-12-28 00:00:00 , DOI: 10.1039/c7ta09897a
Dandan Cui 1, 2, 3, 4, 5 , Liang Wang 4, 6, 7, 8, 9 , Kang Xu 1, 2, 3, 4, 5 , Long Ren 4, 6, 7, 8, 9 , Li Wang 4, 6, 7, 8, 9 , Youxing Yu 4, 5, 9, 10, 11 , Yi Du 1, 2, 3, 4, 5 , Weichang Hao 1, 2, 3, 4, 5
Affiliation  

It remains a great challenge to understand the role of oxygen vacancies in determining the photooxidation properties of semiconductors under visible-light irradiation. Herein, BiOCl with oxygen vacancies is proposed as an excellent model to study the relationship between oxygen vacancies and photooxidation properties. BiOCl nanosheets with abundant oxygen vacancies are synthesized via a facile solvothermal route. Theoretical and experimental results reveal that after the introduction of oxygen vacancies, a new electron donor level appears in the band gap of BiOCl, extending the absorption from the ultraviolet to the visible regime. As expected, BiOCl nanosheets with oxygen vacancies exhibit visible-light-driven photocatalytic activity towards oxygen evolution. In addition, BiOCl with abundant oxygen vacancies exhibits a higher visible-light photocurrent and more efficient photoinduced charge separation and transportation than BiOCl with a small number of oxygen vacancies. The introduction of oxygen vacancies on the surfaces of semiconductors provides a promising way to improve the visible-light photooxidation activity of photocatalysts.

中文翻译:

具有氧空位的BiOCl带隙工程可在可见光照射下实现有效的光氧化性能

理解氧空位在确定可见光照射下半导体的光氧化特性中的作用仍然是一个巨大的挑战。在此,提出了具有氧空位的BiOCl作为研究氧空位与光氧化性质之间关系的优良模型。通过以下方法合成具有大量氧空位的BiOCl纳米片简便的溶剂热途径。理论和实验结果表明,引入氧空位后,BiOCl的带隙中出现了新的电子给体能级,从而将吸收范围从紫外线扩展到可见光。如所期望的,具有氧空位的BiOCl纳米片表现出可见光驱动的对氧释放的光催化活性。此外,具有大量氧空位的BiOCl比具有少量氧空位的BiOCl表现出更高的可见光光电流和更有效的光诱导电荷分离和传输。在半导体表面上引入氧空位提供了改善光催化剂的可见光光氧化活性的有前途的方法。
更新日期:2017-12-28
down
wechat
bug