当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated Hydrologic Simulation
Journal of Advances in Modeling Earth Systems ( IF 4.4 ) Pub Date : 2018-01-10 , DOI: 10.1002/2017ms001052
Jason Hamilton Davison 1, 2 , Hyoun-Tae Hwang 2, 3 , Edward A. Sudicky 2, 3 , Derek V. Mallia 4 , John C. Lin 4
Affiliation  

An ever increasing community of earth system modelers is incorporating new physical processes into numerical models. This trend is facilitated by advancements in computational resources, improvements in simulation skill, and the desire to build numerical simulators that represent the water cycle with greater fidelity. In this quest to develop a state‐of‐the‐art water cycle model, we coupled HydroGeoSphere (HGS), a 3‐D control‐volume finite element surface and variably saturated subsurface flow model that includes evapotranspiration processes, to the Weather Research and Forecasting (WRF) Model, a 3‐D finite difference nonhydrostatic mesoscale atmospheric model. The two‐way coupled model, referred to as HGS‐WRF, exchanges the actual evapotranspiration fluxes and soil saturations calculated by HGS to WRF; conversely, the potential evapotranspiration and precipitation fluxes from WRF are passed to HGS. The flexible HGS‐WRF coupling method allows for unique meshes used by each model, while maintaining mass and energy conservation between the domains. Furthermore, the HGS‐WRF coupling implements a subtime stepping algorithm to minimize computational expense. As a demonstration of HGS‐WRF's capabilities, we applied it to the California Basin and found a strong connection between the depth to the groundwater table and the latent heat fluxes across the land surface.

中文翻译:

大气,地表和地下之间的完整耦合,以进行综合水文模拟

越来越多的地球系统建模者社区正在将新的物理过程纳入数值模型中。计算资源的进步,仿真技术的提高以及建立数字仿真器(更真实地代表水循环)的愿望促进了这一趋势。为了开发最先进的水循环模型,我们将HydroGeoSphere(HGS),3D控制量有限元表面和包括蒸发蒸腾过程的可变饱和地下流模型与天气研究和研究相结合。预报(WRF)模型,这是一种3D有限差异非静水中尺度大气模型。双向耦合模型称为HGS-WRF,将由HGS计算的实际蒸散通量和土壤饱和度交换为WRF。反过来,WRF的潜在蒸散量和降水通量传递给HGS。灵活的HGS-WRF耦合方法允许每个模型使用唯一的网格,同时保持域之间的质量和能量守恒。此外,HGS-WRF耦合实现了子时间步进算法,以最大程度地减少计算费用。为了证明HGS-WRF的功能,我们将其应用于加利福尼亚盆地,发现地下水位的深度与整个陆地表面的潜热通量之间有很强的联系。HGS-WRF耦合实现了子时间步进算法,以最大程度地减少计算费用。为了证明HGS-WRF的功能,我们将其应用于加利福尼亚盆地,发现地下水位的深度与整个陆地表面的潜热通量之间有很强的联系。HGS-WRF耦合实现了子时间步进算法,以最大程度地减少计算费用。为了证明HGS-WRF的功能,我们将其应用于加利福尼亚盆地,发现地下水位的深度与整个陆地表面的潜热通量之间有很强的联系。
更新日期:2018-01-10
down
wechat
bug