当前位置: X-MOL 学术Eur. Polym. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication and mechanism of poly(butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature
European Polymer Journal ( IF 5.8 ) Pub Date : 2018-02-01 , DOI: 10.1016/j.eurpolymj.2017.12.032
Yue Xu , Shuidong Zhang , Xiangfang Peng , Junsheng Wang

Abstract To fabricate biodegradable microcellular foams with high thermal insulation and compressive feature, poly(butylene succinate) urethane ionomer (PBSUIs) were synthesized and foamed by supercritical CO2 via batch foaming method. The intrinsic viscosities, rheological and crystallization properties of PBSUI were characterized by Ubbelohde viscometer, rotational rheometer and X-ray diffraction test, respectively. The results revealed that the complex viscosity of PBSUIs vastly increased with the rise of urethane ionic groups (UIG) content, while its intrinsic viscosity and crystallinity slightly decreased due to the physical network upon UIG aggregation. The morphology, mechanical and thermal insulation properties of PBSUIs foams were evaluated. The results demonstrated that foams morphologies were sensitive to UIG content and dominated their mechanical and thermal insulation properties. PBSUI-3 (3 wt% UIG content) and PBSUI-5 (5 wt% UIG content) microcellular foams exhibited elliptical shape and stretched in the foam-mold height direction, their cells size and opening ratio are smaller than 7.0 μm and 13%, while their cell densities are higher than 4.7 × 109 cells/cm3. Meanwhile, PBSUI-3 microcellular foam achieved 1.6 MPa compressive strength and 76 mW/m·k thermal conduction. Meanwhile, the foamed, mechanical and thermal insulation properties of PBSUIs microcellular foams were proposed. The study promoted a promising solution for biodegradable thermal insulation material applications.

中文翻译:

高绝热抗压聚(丁二酸丁二醇酯)氨基甲酸酯离聚物微孔泡沫的制备及机理

摘要 为制备具有高隔热和抗压性能的可生物降解微孔泡沫,采用分批发泡法合成聚丁二酸丁二醇酯氨基甲酸乙酯离聚物(PBSUIs)并在超临界二氧化碳下发泡。PBSUI 的特性粘度、流变学和结晶性能分别通过乌氏粘度计、旋转流变仪和 X 射线衍射测试进行表征。结果表明,PBSUIs 的复数粘度随着氨基甲酸酯离子基团(UIG)含量的增加而大大增加,而其特性粘度和结晶度由于 UIG 聚集时的物理网络而略有下降。评估了 PBSUIs 泡沫的形态、机械和隔热性能。结果表明,泡沫的形态对 UIG 含量敏感,并主导了它们的机械和隔热性能。PBSUI-3(3 wt% UIG含量)和PBSUI-5(5 wt% UIG含量)微孔泡沫呈椭圆形并在泡沫模具高度方向拉伸,其泡孔尺寸和开口率小于7.0 μm和13% ,而它们的细胞密度高于 4.7 × 109 个细胞/cm3。同时,PBSUI-3微孔泡沫的抗压强度为1.6 MPa,导热系数为76 mW/m·k。同时,提出了PBSUIs微孔泡沫的发泡、机械和隔热性能。该研究为可生物降解的隔热材料应用提供了一种有前景的解决方案。PBSUI-3(3 wt% UIG含量)和PBSUI-5(5 wt% UIG含量)微孔泡沫呈椭圆形并在泡沫模具高度方向拉伸,其泡孔尺寸和开口率小于7.0 μm和13% ,而它们的细胞密度高于 4.7 × 109 个细胞/cm3。同时,PBSUI-3微孔泡沫的抗压强度为1.6 MPa,导热系数为76 mW/m·k。同时,提出了PBSUIs微孔泡沫的发泡、机械和隔热性能。该研究为可生物降解的隔热材料应用提供了一种有前景的解决方案。PBSUI-3(3 wt% UIG含量)和PBSUI-5(5 wt% UIG含量)微孔泡沫呈椭圆形并在泡沫模具高度方向拉伸,其泡孔尺寸和开口率小于7.0 μm和13% ,而它们的细胞密度高于 4.7 × 109 个细胞/cm3。同时,PBSUI-3微孔泡沫的抗压强度为1.6 MPa,导热系数为76 mW/m·k。同时,提出了PBSUIs微孔泡沫的发泡、机械和隔热性能。该研究为可生物降解的隔热材料应用提供了一种有前景的解决方案。PBSUI-3 微孔泡沫达到 1.6 MPa 的抗压强度和 76 mW/m·k 的热传导。同时,提出了PBSUIs微孔泡沫的发泡、机械和隔热性能。该研究为可生物降解的隔热材料应用提供了一种有前景的解决方案。PBSUI-3 微孔泡沫达到了 1.6 MPa 的抗压强度和 76 mW/m·k 的热传导。同时,提出了PBSUIs微孔泡沫的发泡、机械和隔热性能。该研究为可生物降解的隔热材料应用提供了一种有前景的解决方案。
更新日期:2018-02-01
down
wechat
bug