当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction
Small ( IF 13.0 ) Pub Date : 2017-12-27 , DOI: 10.1002/smll.201703098
Junjun Zhang 1, 2 , Chenhui Zhang 3 , Zhenyu Wang 1 , Jian Zhu 1 , Zhiwei Wen 1 , Xingzhong Zhao 2 , Xixiang Zhang 3 , Jun Xu 4 , Zhouguang Lu 1
Affiliation  

A simple one‐pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer‐expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm−2, a small Tafel slope of 36 mV dec−1, and long‐term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH) from density functional theory calculations. This work opens up a new door for developing transition‐metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

中文翻译:

VS2纳米片中的中间层和缺陷工程对高效电催化氢释放反应的协同作用

据报道,一种简单的单锅溶剂热法可合成具有丰富缺陷和最大(1.00)层间间距(1.00 nm)的VS 2纳米片,相对于原始对应物(0.575 nm)的≈74%扩展。层间膨胀的VS 2纳米片表现出非凡的电催化氢逸出反应(HER)动力学指标,在10 mA cm -2的几何电流密度下,低过电位为43 mV,Tafel斜率小,为36 mV dec -1,以及60 h的长期稳定性而没有任何电流衰减。性能要比原始VS 2好得多具有正常的中间层间距,甚至可以与市售Pt / C电催化剂相媲美。出色的电催化活性归因于扩大的层间距离和产生的富缺陷。通过增加的暴露的活性位点数量和修饰的电子结构,可以实现从密度泛函理论计算得出的最佳氢吸附自由能(∆ G H)。这项工作为通过过渡层和缺陷工程开发过渡金属二卤化二硫化碳纳米片作为高活性HER电催化剂打开了新的大门。
更新日期:2017-12-27
down
wechat
bug