当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unusual devisable high-performance perovskite materials obtained by engineering in twins, domains, and antiphase boundaries†
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2017-12-27 00:00:00 , DOI: 10.1039/c7qi00711f
Shenhui Lei 1, 2, 3, 4, 5 , Huiqing Fan 1, 2, 3, 4, 5 , Jiawen Fang 1, 2, 3, 4, 5 , Xiaohu Ren 1, 2, 3, 4, 5 , Longtao Ma 6, 7, 8, 9 , Hailin Tian 1, 2, 3, 4, 5
Affiliation  

With the widespread application, engineering of microstructures, domains, twins, and antiphase boundaries (APBs) is attracting significant attention. However, the origin of the domains, especially in the paraelectric phase, as well as the mechanism of variation in twins or domains and their relationship are still not clear. Generally, these structures are recognized as one of the key origins of intrinsic loss. Our studies, however, reveal that the formation of twins is closely related to the asymmetry of the crystal structure. With the introduction of a lattice blockage-trigonal NdAlO3 phase, the increase in the symmetry of the CaTiO3 tetragonal phase results in a transformation from the (110)-oriented twins to the (111)-oriented twins. Then, it forms a new ordered structure. With the help of peak-differentiation and imitation of the Raman spectra, the A-site in the perovskite structure is found to be a dominant factor in lattice energy and performance. By designing an A-site displacement, i.e., Sr2+ or Ba2+ substitution into Ca2+, we created a controllable structure of twins by symmetry regulation and APBs by introducing ferroelectric spontaneous polarization. Via selected area electron diffraction patterns (SAED) and variable temperature electric field piezoresponse force microscopy (PFM) images, we found that 180° and 90° domains could coexist in the grains of xCaTiO3–(1 − x)NdAlO3 ceramics. Interestingly, the 90° domains and twin boundaries (TB) play more important roles in the anisotropic resistance to the electron/hole transfer. Our studies prove that the defect engineering can realize a controllable enhanced dielectric performance by defect regulation within the host lattice. These may pave a possible way for the design of the microstructure of the defects to achieve better predictable performances of the materials.

中文翻译:

通过在孪晶,晶畴和反相边界中工程获得的异常可取的高性能钙钛矿材料

随着广泛的应用,微观结构,区域,孪晶和反相边界(APB)的工程设计引起了极大的关注。然而,畴的起源,特别是在顺电相中,以及孪晶或畴的变化机理及其关系仍不清楚。通常,这些结构被认为是固有损失的关键原因之一。然而,我们的研究表明,孪晶的形成与晶体结构的不对称性密切相关。通过引入晶格堵塞-三角NdAlO的3相,在的CaTiO的对称性的增加3四方相导致从(110)取向的孪晶向(111)取向的孪晶的转变。然后,它形成一个新的有序结构。借助峰扩散和拉曼光谱的模仿,钙钛矿结构中的A位被发现是晶格能量和性能的主要因素。通过设计一个A位置位移,Sr 2+或Ba 2+取代为Ca 2+,我们通过对称调节和通过引入铁电自发极化形成APB形成了可控的孪晶结构。通过选择区域电子衍射图案(SAED)和可变温度电场压电响应力显微镜(PFM)的图像,我们发现,180°和90°畴会在晶粒共存X的CaTiO 3 - (1 - X)NdAlO 3个陶瓷。有趣的是,90°畴和孪晶界(TB)在各向异性对电子/空穴传输的抵抗中扮演着更重要的角色。我们的研究证明,缺陷工程可以通过主晶格内的缺陷调节来实现可控的增强介电性能。这些可能为缺陷的微观结构设计提供一种可能的方式,以实现更好的材料可预测性能。
更新日期:2017-12-27
down
wechat
bug