当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2017-12-23 , DOI: 10.1016/j.apcatb.2017.12.057
Jieyuan Li , Xing’an Dong , Yanjuan Sun , Wanglai Cen , Fan Dong

Surface plasmon resonance (SPR) induced plasmonic photocatalysis provides a brand new way for more efficient light absorption and utilization to achieve better solar light conversion. Although the SPR effect in metal-semiconductor photocatalysis has been widely investigated, the SPR-driven interfacial charge separation and transfer patterns between the two counterparts have not yet been fully revealed. The plasmonic metal-semiconductor photocatalytic systems require to be rationally designed, especially for the facet-aspect of the semiconductor, which can dominantly endow the contacting interface with diverse charge transfer patterns. Taken Bi metal deposited at the typical (001) and (010) facets of BiOBr nanosheets as a case study, we demonstrate that the surface charge alternation on the (010) facet highly favors the interfacial charge separation and transfer, by providing a new route of [Bi2O2]2+ → plasmonic metal → Br for interfacial carriers transfer. The charge alternation on discrepant semiconductor facets in essence makes the plasmonic photocatalytic system be different in charge transportation pattern. These new findings are further validated in extensive composite systems composed of alternative plasmonic metal (Ag and Au) and semiconductors (BiOCl and BiOI). The perspective here can open numerous possibilities for the rational design of more efficient plasmonic photocatalysts.



中文翻译:

等离子体依赖性光催化剂中与面有关的界面电荷分离和转移

表面等离子体共振(SPR)诱导的等离子体光催化为更有效地吸收和利用光提供了全新的途径,以实现更好的太阳光转换。尽管已广泛研究了金属半导体光催化中的SPR效应,但尚未充分揭示两种对应物之间SPR驱动的界面电荷分离和转移方式。等离子体金属-半导体光催化系统需要进行合理设计,尤其是对于半导体的方面而言,可以显着赋予接触界面多种电荷转移模式。以沉积在BiOBr纳米片的典型(001)和(010)面上的Bi金属作为案例研究,2 Ò 2 ] 2+  →等离子化金属→溴-用于界面的载体传递。本质上,不同半导体面上的电荷交替使等离激元光催化体系的电荷传输方式不同。这些新发现在由替代等离子金属(Ag和Au)和半导体(BiOCl和BiOI)组成的广泛复合系统中得到了进一步验证。这里的观点可以为合理设计更高效的等离激元光催化剂开辟许多可能性。

更新日期:2017-12-23
down
wechat
bug