当前位置: X-MOL 学术Chem. Asian J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Synthesis of 3D Flower‐Like Nanocrystalline Ni/C and its Effect on Hydrogen Storage Properties of LiAlH4
Chemistry - An Asian Journal ( IF 3.5 ) Pub Date : 2018-01-15 , DOI: 10.1002/asia.201701649
Lei Zang 1 , Song Liu 1 , Huinan Guo 1 , Xiaoya Chang 1 , Xiangqian Xu 2 , Lifang Jiao 1 , Huatang Yuan 1 , Yijing Wang 1, 3
Affiliation  

Lithium alanate (LiAlH4) is of particular interest as one of the most promising candidates for solid‐state hydrogen storage. Unfortunately, high dehydrogenation temperatures and relatively slow kinetics limit its practical applications. Herein, 3D flower‐like nanocrystalline Ni/C, composed of highly dispersed Ni nanoparticles and interlaced carbon flakes, was synthesized in situ. The as‐synthesized nanocrystalline Ni/C significantly decreased the dehydrogenation temperature and dramatically improved the dehydrogenation kinetics of LiAlH4. It was found that the LiAlH4 sample with 10 wt % Ni/C (LiAlH4‐10 wt %Ni/C) began hydrogen desorption at approximately 48 °C, which is very close to ambient temperature. Approximately 6.3 wt % H2 was released from LiAlH4‐10 wt %Ni/C within 60 min at 140 °C, whereas pristine LiAlH4 only released 0.52 wt % H2 under identical conditions. More importantly, the dehydrogenated products can partially rehydrogenate at 300 °C under 4 MPa H2. The synergetic effect of the flower‐like carbon substrate and Ni active species contributes to the significantly reduced dehydrogenation temperatures and improved kinetics.

中文翻译:

3D花样纳米晶Ni / C的原位合成及其对LiAlH4储氢性能的影响

铝酸锂(LiAlH 4)作为固态储氢的最有希望的候选者之一特别引起人们的兴趣。不幸的是,高的脱氢温度和相对较慢的动力学限制了其实际应用。在此,原位合成了由高度分散的Ni纳米颗粒和交错的碳薄片组成的3D花状纳米晶Ni / C。合成后的纳米晶Ni / C显着降低了脱氢温度,并显着提高了LiAlH 4的脱氢动力学。发现具有10 wt%Ni / C(LiAlH 4-10 wt%Ni / C)的LiAlH 4样品在约48°C时开始脱氢,这非常接近环境温度。约6.3 wt%H2从释放的LiAlH 4 -10%(重量)的Ni / C在140℃下在60分钟内,而原始的LiAlH 4只发行0.52重量%H 2相同的条件下。更重要的是,脱氢产物可以在300℃,4 MPa H 2下进行部分再氢化。花状碳底物和镍活性物质的协同作用有助于显着降低脱氢温度并改善动力学。
更新日期:2018-01-15
down
wechat
bug