当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coal Refining Chemical Looping Systems with CO2 as a Co-Feedstock for Chemical Syntheses
Energy & Fuels ( IF 5.2 ) Pub Date : 2018-01-12 00:00:00 , DOI: 10.1021/acs.energyfuels.7b02742
Mandar Kathe 1 , Peter Sandvik 1 , Charles Fryer 1 , Fanhe Kong 1 , Yitao Zhang 1 , Gabrielle Grigonis 1 , Liang-Shih Fan 1
Affiliation  

This study quantifies the advantages of a chemical looping reducer reactor modularization strategy that leverages two or more reducer reactors operating in parallel to enhance syngas production beyond what is achievable by a single reducer reactor or conventional processes. The modularized system incorporates CO2 capture and utilization as a feedstock in an iron–titanium composite metal oxide based chemical looping system to enhance coal based chemical production. Simulations conducted in ASPEN Plus software suggest that adopting a cocurrent moving bed reducer reactor based modularization strategy can improve syngas yield by greater than 11% over a single chemical looping reducer reactor. Experiments conducted on a bench scale reducer reactor confirm the findings of the simulations. The modularization simulation was scaled up and incorporated into commercial sized methanol and acetic acid production plants. Chemical looping modularization demonstrates the ability to reduce coal consumption by 25% over a baseline coal gasification process, compared to 15% reduction if a single chemical looping reducer reactor is used instead of the modular strategy, for 10 000 ton per day methanol production. Integration into a commercial scale acetic acid plant shows conditions in which the process can operate as a CO2 neutral or negative system, where the process was consuming more CO2 than it produces. These results indicate the potential for significant feedstock reduction in large-scale coal to chemical processes, like methanol, acetic acid, formic acid, and oxalic acid.

中文翻译:

以CO 2为辅助原料的炼煤化学循环系统,用于化学合成

这项研究量化了化学回路还原器反应器模块化策略的优势,该策略利用两个或多个并行运行的还原器反应器,以提高合成气的产量,超出单个还原器反应器或常规工艺所能达到的范围。模块化系统结合了CO 2捕集和利用铁钛复合金属氧化物为基础的化学循环系统中的原料,以增强煤的化学生产。在ASPEN Plus软件中进行的仿真表明,采用基于并流移动床还原器反应器的模块化策略可以比单个化学回路还原器反应器将合成气收率提高11%以上。在台式减径反应器上进行的实验证实了模拟的结果。扩大了模块化仿真的规模,并将其并入了商业规模的甲醇和乙酸生产工厂。化学循环模块化显示出与基准煤气化工艺相比可减少25%煤炭消耗的能力,而如果使用单个化学循环还原反应器代替模块化策略,则可将煤炭消耗降低15%,每天生产1万吨甲醇。集成到商业规模的乙酸装置中显示了该工艺可以作为CO进行操作的条件2中性或负性系统,该过程所消耗的CO 2比其产生的更多。这些结果表明,大规模将煤还原为化学过程(如甲醇,乙酸,甲酸和草酸)的潜力很大。
更新日期:2018-01-12
down
wechat
bug