当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sustainable packaging biocomposites from polylactic acid and wheat straw: Enhanced physical performance by solid state shear milling process
Composites Science and Technology ( IF 8.3 ) Pub Date : 2018-04-01 , DOI: 10.1016/j.compscitech.2017.12.026
Shuangqiao Yang , Shibing Bai , Qi Wang

Abstract As a sustainable and inexpensive agricultural byproduct, wheat straw has gained major interest as filler in green composites in recent years, but previous studies about PLA/wheat straw composites have reported modest enhancement or even major reduction in physical performance. Here, we report a new method for both production cellulose nanofibrils and achieving excellent dispersion in composites free of solvent for the first time, and enhanced physical performance is obtained via solid state shear milling process (SSSM). The SSSM pretreatment process led wheat straw an ultrafine particle size and even the separation of cellulose nanofibrils from micro-sized pristine cellulose fibers. Both optical and electron microscopy revealed that composites made by SSSM process exhibit excellent dispersion of hemicellulose, lignin and cellulose nanofibrils which derived from wheat straw. Such PLA/wheat straw composites exhibited fast crystallization rate with 0.8 min crystallization half-time and 41.4% crystallinity, leading major enhancement in flexural modulus which exceed the known value reported in the literature. In addition, a heat deflection temperature of 73 °C is observed with 30%wt wheat straw, which is much higher than neat PLA. Furthermore, high water vapor permeability is observed in composites, enabling food packaging applications especially for respiring fresh products such as fruits and vegetable. The approach presented in this paper highlights a novel technique for recovering wheat straw in producing value-added products.

中文翻译:

来自聚乳酸和小麦秸秆的可持续包装生物复合材料:通过固态剪切研磨工艺增强物理性能

摘要 近年来,作为一种可持续且廉价的农业副产品,小麦秸秆作为绿色复合材料的填料引起了人们的极大兴趣,但先前关于 PLA/小麦秸秆复合材料的研究报道了物理性能的适度增强甚至显着降低。在这里,我们报告了一种生产纤维素纳米纤丝并首次在无溶剂复合材料中实现优异分散的新方法,并通过固态剪切研磨工艺 (SSSM) 获得了增强的物理性能。SSSM 预处理过程使小麦秸秆具有超细粒度,甚至使纤维素纳米原纤维与微米级原始纤维素纤维分离。光学和电子显微镜均表明,SSSM 工艺制成的复合材料表现出优异的半纤维素分散性,源自小麦秸秆的木质素和纤维素纳米原纤维。这种 PLA/小麦秸秆复合材料表现出快速结晶速度,结晶半衰期为 0.8 分钟,结晶度为 41.4%,导致弯曲模量的显着提高,超过了文献中报道的已知值。此外,在 30%wt 的麦秆中观察到 73°C 的热变形温度,这远高于纯 PLA。此外,在复合材料中观察到高水蒸气渗透性,使食品包装应用成为可能,特别是用于呼吸新鲜产品,如水果和蔬菜。本文提出的方法强调了一种在生产增值产品中回收小麦秸秆的新技术。8 分钟的结晶半衰期和 41.4% 的结晶度,导致弯曲模量的显着增强,超过了文献中报道的已知值。此外,在 30%wt 的麦秆中观察到 73°C 的热变形温度,这远高于纯 PLA。此外,在复合材料中观察到高水蒸气渗透性,使食品包装应用成为可能,特别是用于呼吸新鲜产品,如水果和蔬菜。本文提出的方法强调了一种在生产增值产品中回收小麦秸秆的新技术。8 分钟的结晶半衰期和 41.4% 的结晶度,导致弯曲模量的显着增强,超过了文献中报道的已知值。此外,在 30%wt 的麦秆中观察到 73°C 的热变形温度,这远高于纯 PLA。此外,在复合材料中观察到高水蒸气渗透性,使食品包装应用成为可能,特别是用于呼吸新鲜产品,如水果和蔬菜。本文提出的方法强调了一种在生产增值产品中回收小麦秸秆的新技术。此外,在复合材料中观察到高水蒸气渗透性,使食品包装应用成为可能,特别是用于呼吸新鲜产品,如水果和蔬菜。本文提出的方法强调了一种在生产增值产品中回收小麦秸秆的新技术。此外,在复合材料中观察到高水蒸气渗透性,使食品包装应用成为可能,特别是用于呼吸新鲜产品,如水果和蔬菜。本文提出的方法强调了一种在生产增值产品中回收小麦秸秆的新技术。
更新日期:2018-04-01
down
wechat
bug