当前位置: X-MOL 学术Renew. Sust. Energ. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel strategy for sequestering atmospheric CO2: The use of sealed microalgal cultures located in the open-oceans
Renewable and Sustainable Energy Reviews ( IF 16.3 ) Pub Date : 2017-10-06 , DOI: 10.1016/j.rser.2017.10.001
Ron G. Smith , Ian J. Smith , Brendan D. Smith

Here we introduce the concept of utilizing microalgal cultures grown in sealed enclosures located in open-oceans to sequester CO2 from both the atmosphere and flue gases. This method of sequestering CO2 overcomes the major limitations of sequestering appreciable CO2 using existing technologies, such as microalgae cultured in open ponds, photobioreactors, or continuous bioreactors on land or near shore. Open ponds require vast surface areas and generally have low net productivity due to light and temperature limitations during the night and winter periods. Continuous algal bioreactors are much more productive, but this comes at the expense of controlling the parameters of the bioreactors, such as light regimes and temperature. The additional energy inputs used to control the parameters of the bioreactors negate their effectiveness of sequestering CO2 on a global scale. Near shore photobioreactors lack the capacity to be scaled up to sequester appreciable CO2. Alternatively, we propose that atmospheric CO2 and/or the flue gases (containing CO2, NOx and SOx) can be collected and transferred to enclosed vessels or bags containing algal cultures situated in the open-oceans. The productivity of the enclosed cultures could be optimized by moving the bags to various locations in the oceans, allowing for control of temperature, irradiance, and hours of daylight.

Theoretical calculations using demonstrated CO2 sequestration efficiencies and production rates of microalgal batch cultures suggest that 4 cylindrical enclosures, each with a diameter of 100 m and a depth of 40 m would be able to sequester the CO2 emitted by a 500 MW coal-fired generating plant. On a grander scale, using the same CO2 consumption rates and the enclosures described above, roughly 14,000 enclosures could reduce the CO2 in the troposphere by 1 ppm on a yearly basis, representing half of the total CO2 added to the atmosphere annually.



中文翻译:

隔离大气中CO 2的新策略:使用位于开放海洋中的密封微藻培养物

在这里,我们介绍了利用微藻培养物的概念,这些微藻培养物生长在开放海洋中的密封封闭环境中,以隔离大气和烟道气中的CO 2。这种螯合CO 2的方法克服了螯合可观的CO 2的主要局限性使用现有技术,例如在开放池塘中养殖的微藻,光生物反应器或陆地或近岸的连续生物反应器。露天池塘需要广阔的表面积,并且由于夜间和冬季的光照和温度限制,其净生产力通常较低。连续藻类生物反应器的生产率更高,但这是以控制生物反应器的参数(例如光照条件和温度)为代价的。用于控制生物反应器参数的额外能量输入抵消了其在全球范围内封存CO 2的有效性。近岸光生物反应器缺乏按比例增加以隔离可识别的CO 2的能力。另外,我们建议大气中的CO 2和/或烟道气(含有CO 2,NO x和SO x)可以收集并转移到密闭的容器或袋中,这些容器或袋中包含位于大洋中的藻类培养物。可以通过将包装袋移至海洋中的不同位置来优化封闭式养殖的生产力,从而控制温度,辐照度和日照时间。

使用已证明的CO 2螯合效率和微藻分批培养物的生产率的理论计算表明,四个直径为100  m且深度为40 m的圆柱形外壳能够隔离500 MW燃煤的CO 2排放 量发电厂。在更大的规模上,使用相同的CO 2消耗率和上述封闭空间,大约14,000个封闭空间每年可将对流层中的CO 2减少1  ppm,相当于每年向大气中添加的总CO 2的一半。

更新日期:2017-12-27
down
wechat
bug