当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction
Journal of the American Chemical Society ( IF 13.858 ) Pub Date : 2018-01-02 , DOI: 10.1021/jacs.7b09964
Yuanyue Liu, Wenzhuo Wu, William A. Goddard

In anisotropic materials, the electrical and atomic transport along the weak interaction direction is usually much slower than that along the chemical bond direction. However, Te, an important semiconductor composed of helical atomic chains, exhibits nearly isotropic electrical transport between intrachain and interchain directions. Using first-principles calculations to study bulk and few-layer Te, we show that this isotropy is related to similar effective masses and potentials for charge carriers along different transport directions, benefiting from the delocalization of the lone-pair electrons. This delocalization also enhances the interchain binding, and thus facilitates diffusion of vacancies and interstitial atoms across the chains, which together with the fast intrachain diffusion enable rapid self-healing of these defects at low temperature. Interestingly, the interstitial atoms diffuse along the chain via a concerted rotation mechanism. Our work reveals the unconventional properties underlying the superior performance of Te while providing insight into the transport in anisotropic materials.
更新日期:2018-01-03

 

Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
分享到
评论: 0
期刊列表
Wiley论文编辑服务,每月大奖送不停!
南京大学化学化工学院谢劲课题组招聘启事
广州大学水污染过程与控制研究团队招聘启事
华中师范大学第一届国际青年学者化学科学论坛
【问答】谍反应有哪些重要应用?
X-MOL近期新增451种期刊(20171216)
2017年中科院JCR分区化学大类列表
试剂库存管理
化合物查询
down
wechat
bug