当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tellurium: Fast Electrical and Atomic Transport along Weak Interaction Direction
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2018-01-02 , DOI: 10.1021/jacs.7b09964
Yuanyue Liu 1, 2 , Wenzhuo Wu 3 , William A. Goddard 1
Affiliation  

In anisotropic materials, the electrical and atomic transport along the weak interaction direction is usually much slower than that along the chemical bond direction. However, Te, an important semiconductor composed of helical atomic chains, exhibits nearly isotropic electrical transport between intrachain and interchain directions. Using first-principles calculations to study bulk and few-layer Te, we show that this isotropy is related to similar effective masses and potentials for charge carriers along different transport directions, benefiting from the delocalization of the lone-pair electrons. This delocalization also enhances the interchain binding, and thus facilitates diffusion of vacancies and interstitial atoms across the chains, which together with the fast intrachain diffusion enable rapid self-healing of these defects at low temperature. Interestingly, the interstitial atoms diffuse along the chain via a concerted rotation mechanism. Our work reveals the unconventional properties underlying the superior performance of Te while providing insight into the transport in anisotropic materials.

中文翻译:

碲:沿弱相互作用方向的快速电和原子传输

在各向异性材料中,沿弱相互作用方向的电和原子传输通常比沿化学键方向的传输慢得多。然而,Te 是一种由螺旋原子链组成的重要半导体,在链内和链间方向之间表现出几乎各向同性的电传输。使用第一性原理计算来研究体层和少层 Te,我们表明这种各向同性与沿不同传输方向的电荷载流子的相似有效质量和电位有关,这得益于孤对电子的离域化。这种离域化还增强了链间结合,从而促进了空位和间隙原子跨链的扩散,这与快速链内扩散一起使这些缺陷能够在低温下快速自愈。有趣的是,间隙原子通过协同旋转机制沿着链扩散。我们的工作揭示了 Te 卓越性能背后的非常规特性,同时提供了对各向异性材料传输的深入了解。
更新日期:2018-01-02
down
wechat
bug