当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of a low-temperature N2 dissociation catalyst exploiting near-IR-to-visible light nanoplasmonics.
Science Advances ( IF 11.7 ) Pub Date : 2017-Dec-01 , DOI: 10.1126/sciadv.aao4710
John Mark P. Martirez 1 , Emily A. Carter 2
Affiliation  

Despite more than a century of advances in catalyst and production plant design, the Haber-Bosch process for industrial ammonia (NH3) synthesis still requires energy-intensive high temperatures and pressures. We propose taking advantage of sunlight conversion into surface plasmon resonances in Au nanoparticles to enhance the rate of the N2 dissociation reaction, which is the bottleneck in NH3 production. We predict that this can be achieved through Mo doping of the Au surface based on embedded multireference correlated wave function calculations. The Au component serves as a light-harvesting antenna funneling energy onto the Mo active site, whereby excited-state channels (requiring 1.4 to 1.45 eV, near-infrared-to-visible plasmon resonances) may be accessed. This effectively lowers the energy barriers to 0.44 to 0.77 eV/N2 (43 to 74 kJ/mol N2) from 3.5 eV/N2 (335 kJ/mol N2) in the ground state. The overall process requires three successive surface excitation events, which could be facilitated by amplified resonance energy transfer due to plasmon local field enhancement.

中文翻译:

利用近红外到可见光纳米等离子体技术预测低温N2解离催化剂。

尽管在催化剂和生产装置的设计上已有一百多年的进步,但用于工业氨(NH 3)合成的哈伯-博世(Haber-Bosch)工艺仍然需要耗能大量的高温和高压。我们建议利用Au纳米颗粒中的阳光转化为表面等离振子共振来提高N 2解离反应的速率,这是NH 3的瓶颈生产。我们预测这可以通过基于嵌入的多参考相关波函数计算的Au表面的Mo掺杂来实现。Au组分用作将能量集中到Mo活性位点上的集光天线,从而可以访问激发态通道(需要1.4到1.45 eV,近红外到可见的等离振子共振)。这有效地降低了能量壁垒0.44到0.77电子伏特/ N 2(43至74千焦耳/摩尔的N 2从为3.5eV / N)2(335千焦耳/摩尔的N 2在基态)。整个过程需要三个连续的表面激发事件,由于等离激元局部场增强,可以通过放大的共振能量转移来促进这些事件。
更新日期:2017-12-22
down
wechat
bug