当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cross-flow structured packing for the process intensification of post-combustion carbon dioxide capture
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.ces.2017.12.022
Gianluca Lavalle , Mathieu Lucquiaud , Marc Wehrli , Prashant Valluri

Abstract We introduce novel insights into a cross-flow arrangement of structured packings specifically for post-combustion carbon dioxide capture. Gas-liquid dynamics are investigated numerically, with the liquid flowing under the action of the gravity and the gas driven by a horizontal pressure gradient crossing the liquid phase. An elementary packing cell consists of two connected channels: one depicting a co-current gas-liquid flow and the other depicting a counter-current two-phase flow. While flow reversal of the liquid phase can occur in the counter-flow channel at high gas flow rates, the overall flooding point is significantly delayed in comparison to a counter-current flow arrangement traditionally used for structured packings. Varying the gas flow rate and the tilting angle of the elementary cell, a detailed numerical analysis of the flow repartition between channels, the pressure drop, the gas and liquid velocities, and the onset of flooding is presented. The pressure drop is found to be smaller when tilting the cell with respect to the initial scenario at 45 ° . Flow reversal instead is delayed when lowering the tilting angle, that is when the cell is tilted anti-clockwise. We also reveal the presence of long waves at the edge of the cell at low tilting angles. Finally, data of the wet pressure drop in the cross-flow cell are compared with different commercially available types of packing arranged in a conventional vertical counter-flow configuration, such as several versions of the Sulzer Mellapak™.

中文翻译:

用于燃烧后二氧化碳捕集过程强化的错流规整填料

摘要 我们介绍了专门用于燃烧后二氧化碳捕获的规整填料的错流排列的新见解。气液动力学通过数值研究,液体在重力作用下流动,气体由水平压力梯度驱动穿过液相。基本填料单元由两个相连的通道组成:一个描述并流气液流,另一个描述逆流两相流。虽然在高气体流速下,逆流通道中可能会发生液相的反向流动,但与传统上用于规整填料的逆流流动布置相比,整体溢流点显着延迟。改变气体流速和单元电池的倾斜角度,对通道之间的流动重新分配、压降、气体和液体速度以及泛滥开始进行了详细的数值分析。当相对于初始场景倾斜 45° 时,发现压降较小。当降低倾斜角度时,即当细胞逆时针倾斜时,流动反转反而会延迟。我们还揭示了在低倾斜角的细胞边缘存在长波。最后,将交叉流动池中的湿压降数据与不同的市售填料类型进行比较,这些填料以传统的垂直逆流配置排列,例如几种版本的 Sulzer Mellapak™。当相对于初始场景倾斜 45° 时,发现压降较小。当降低倾斜角度时,即当细胞逆时针倾斜时,流动反转反而会延迟。我们还揭示了在低倾斜角的细胞边缘存在长波。最后,将交叉流动池中的湿压降数据与不同的市售填料类型进行比较,这些填料以传统的垂直逆流配置排列,例如几种版本的 Sulzer Mellapak™。当相对于初始场景倾斜 45° 时,发现压降较小。当降低倾斜角度时,即当细胞逆时针倾斜时,流动反转反而会延迟。我们还揭示了在低倾斜角的细胞边缘存在长波。最后,将交叉流动池中的湿压降数据与不同的市售填料类型进行比较,这些填料以传统的垂直逆流配置排列,例如几种版本的 Sulzer Mellapak™。
更新日期:2018-03-01
down
wechat
bug