当前位置: X-MOL 学术Pharmacol. Therapeut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances in mass spectrometry-based approaches for proteomics and biologics: Great contribution for developing therapeutic antibodies
Pharmacology & Therapeutics ( IF 13.5 ) Pub Date : 2017-12-22 , DOI: 10.1016/j.pharmthera.2017.12.007
Noriko Iwamoto , Takashi Shimada

Since the turn of the century, mass spectrometry (MS) technologies have continued to improve dramatically, and advanced strategies that were impossible a decade ago are increasingly becoming available. The basic characteristics behind these advancements are MS resolution, quantitative accuracy, and information science for appropriate data processing. The spectral data from MS contain various types of information. The benefits of improving the resolution of MS data include accurate molecular structural-derived information, and as a result, we can obtain a refined biomolecular structure determination in a sequential and large-scale manner. Moreover, in MS data, not only accurate structural information but also the generated ion amount plays an important rule. This progress has greatly contributed a research field that captures biological events as a system by comprehensively tracing the various changes in biomolecular dynamics. The sequential changes of proteome expression in biological pathways are very essential, and the amounts of the changes often directly become the targets of drug discovery or indicators of clinical efficacy. To take this proteomic approach, it is necessary to separate the individual MS spectra derived from each biomolecule in the complexed biological samples. MS itself is not so infinite to perform the all peak separation, and we should consider improving the methods for sample processing and purification to make them suitable for injection into MS.

The above-described characteristics can only be achieved using MS with any analytical instrument. Moreover, MS is expected to be applied and expand into many fields, not only basic life sciences but also forensic medicine, plant sciences, materials, and natural products. In this review, we focus on the technical fundamentals and future aspects of the strategies for accurate structural identification, structure-indicated quantitation, and on the challenges for pharmacokinetics of high-molecular-weight protein biopharmaceuticals.



中文翻译:

基于质谱的蛋白质组学和生物制剂方法的最新进展:为开发治疗性抗体做出了巨大贡献

自本世纪之交以来,质谱(MS)技术一直在持续快速发展,并且十年前不可能实现的高级策略也越来越多。这些进步背后的基本特征是质谱分辨率,定量准确性和用于适当数据处理的信息科学。来自MS的光谱数据包含各种类型的信息。提高MS数据分辨率的好处包括准确的分子结构信息,因此,我们可以按顺序和大规模的方式获得精确的生物分子结构测定结果。而且,在MS数据中,不仅精确的结构信息而且产生的离子量也起着重要的规则。这一进展极大地推动了一个研究领域,该领域通过全面追踪生物分子动力学的各种变化,将生物事件捕获为一个系统。蛋白质组表达在生物途径中的顺序变化是非常必要的,并且变化的数量通常直接成为药物发现的目标或临床功效的指标。要采用这种蛋白质组学方法,必须分离复杂生物样品中源自每个生物分子的各个MS质谱图。MS本身并不是执行所有峰分离的无限方法,我们应该考虑改进样品处理和纯化方法,使其适合进样到MS中。蛋白质组表达在生物途径中的顺序变化是非常必要的,并且变化的数量通常直接成为药物发现的目标或临床功效的指标。要采用这种蛋白质组学方法,必须分离复杂生物样品中源自每个生物分子的各个MS质谱图。MS本身并不是执行所有峰分离的无限方法,我们应该考虑改进样品处理和纯化方法,使其适合进样到MS中。蛋白质组表达在生物途径中的顺序变化是非常必要的,并且变化的数量通常直接成为药物发现的目标或临床功效的指标。要采用这种蛋白质组学方法,必须分离复杂生物样品中源自每个生物分子的各个MS质谱图。MS本身并不是执行所有峰分离的无限方法,我们应该考虑改进样品处理和纯化方法,使其适合进样到MS中。有必要分离来自复杂生物样品中每个生物分子的各个质谱图。MS本身并不能无限执行所有峰分离,我们应该考虑改进样品处理和纯化方法,使其适合进样到MS中。有必要分离来自复杂生物样品中每个生物分子的各个质谱图。MS本身并不是执行所有峰分离的无限方法,我们应该考虑改进样品处理和纯化方法,使其适合进样到MS中。

只能使用MS与任何分析仪器一起实现上述特性。而且,MS有望被应用并扩展到许多领域,不仅包括基础生命科学,而且包括法医学,植物科学,材料和天然产物。在这篇综述中,我们关注于准确的结构鉴定,结构指示的定量分析的技术基础和策略的未来方面,以及高分子量蛋白质生物药物的药代动力学挑战。

更新日期:2017-12-22
down
wechat
bug