当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bond saturation significantly enhances thermal energy transport in two-dimensional pentagonal materials
Nano Energy ( IF 17.6 ) Pub Date : 2017-12-21 , DOI: 10.1016/j.nanoen.2017.12.032
Zeyu Liu , Xufei Wu , Vikas Varshney , Jonghoon Lee , Guangzhao Qin , Ming Hu , Ajit K. Roy , Tengfei Luo

Thermal transport in nanoscale two-dimensional (2D) materials is of great scientific interest and has practical implications for energy related applications like thermal management of energy devices, composite battery materials and on-board thermoelectric power generation for sensors. The abilities to manipulate thermal transport in 2D materials is thus highly desirable for future nano energy technologies. In this work, we identify a general rule for controlling the thermal transport in 2D pentagonal materials through bond saturation. We use first-principles calculations to investigate the phonon properties of a series of pentagonal materials, including penta-graphene (PG), hydrogenated PG (h-PG) and fluorinated PG (f-PG), and find that the bond saturation of the carbon atoms through functionalization can reduce the bond anharmonicity and thus increase the phonon lifetime. We can follow this rule to predict very high thermal conductivity of other pentagonal structures with saturated bonds, including penta-CN2 (1027 W/mK) and two three-dimensional counterparts of PG called T12-carbon (819 W/mK) and AA T12-carbon (1049 W/mK). Moreover, similar trend of bond saturation-induced thermal conductivity enhancement can be found in other 2D pentagonal materials, such as penta-SiC2 and penta-SiN2. The results from this work unveil a general bonding-thermal transport relation for 2D materials, which can provide important guidance for designing novel materials with desirable thermal transport properties for energy applications.



中文翻译:

键的饱和度显着增强了二维五边形材料中的热能传输

纳米级二维(2D)材料中的热传输具有重大的科学意义,并且对与能源相关的应用(如能源设备的热管理,复合电池材料和传感器的车载热电发电)具有实际意义。因此,对于未来的纳米能源技术来说,在2D材料中操纵热传输的能力是非常需要的。在这项工作中,我们确定了通过键饱和来控制2D五边形材料中热传递的一般规则。我们使用第一性原理计算来研究一系列五边形材料的声子特性,这些材料包括五石墨烯(PG),氢化PG(h-PG)和氟化PG(f-PG),并发现通过官能化使碳原子的键饱和可以降低键的非谐性,从而延长声子的寿命。我们可以遵循此规则来预测其他具有饱和键的五边形结构(包括五氯化碳)的极高导热率2(1027 W / mK)和两个PG的三维对应物,分别称为T12-碳(819 W / mK)和AA T12-碳(1049 W / mK)。此外,在其他2D五边形材料(例如,penta-SiC 2和penta-SiN 2)中,也可以找到类似的键饱和引起的导热系数提高的趋势。这项工作的结果揭示了2D材料的一般粘合-热传递关系,这可以为设计具有理想的热传递特性的新型材料提供重要的指导,以实现能源应用。

更新日期:2017-12-21
down
wechat
bug