当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of Additive and Polarizable Models with Explicit Treatment of Long-Range Lennard-Jones Interactions Using Alkane Simulations
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2018-01-09 00:00:00 , DOI: 10.1021/acs.jctc.7b00948
Alison N. Leonard 1 , Andrew C. Simmonett 2 , Frank C. Pickard 2 , Jing Huang 2, 3 , Richard M. Venable 2 , Jeffery B. Klauda 1, 4 , Bernard R. Brooks 2 , Richard W. Pastor 2
Affiliation  

Long-range Lennard-Jones (LJ) interactions have a significant impact on the structural and thermodynamic properties of nonpolar systems. While several methods have been introduced for the treatment of long-range LJ interactions in molecular dynamics (MD) simulations, increased accuracy and extended applicability is required for anisotropic systems such as lipid bilayers. The recently refined Lennard-Jones particle-mesh Ewald (LJ-PME) method extends the particle-mesh Ewald (PME) method to long-range LJ interactions and is suitable for use with anisotropic systems. Implementation of LJ-PME with the CHARMM36 (C36) additive and CHARMM Drude polarizable force fields improves agreement with experiment for density, isothermal compressibility, surface tension, viscosity, translational diffusion, and 13C T1 relaxation times of pure alkanes. Trends in the temperature dependence of the density and isothermal compressibility of hexadecane are also improved. While the C36 additive force field with LJ-PME remains a useful model for liquid alkanes, the Drude polarizable force field with LJ-PME is more accurate for nearly all quantities considered. LJ-PME is also preferable to the isotropic long-range correction for hexadecane because the molecular order extends to nearly 20 Å, well beyond the usual 10–12 Å cutoffs used in most simulations.

中文翻译:

使用Alkane模拟比较加性和可极化模型以及显式处理长距离Lennard-Jones相互作用

Lennard-Jones(LJ)的远程相互作用对非极性系统的结构和热力学性质有重大影响。虽然已经引入了几种方法来处理分子动力学(MD)模拟中的长距离LJ相互作用,但各向异性系统(如脂质双层)需要提高准确性和扩展的适用性。最近改进的Lennard-Jones粒子-网格Ewald(LJ-PME)方法将粒子-网格Ewald(PME)方法扩展到长距离LJ相互作用,并且适合与各向异性系统一起使用。使用CHARMM36(C36)添加剂和CHARMM Drude极化力场实现LJ-PME,可提高与密度,等温可压缩性,表面张力,粘度,平移扩散和13 C T的实验的一致性纯烷烃的弛豫时间为1。十六烷的密度和等温压缩性的温度依赖性趋势也得到改善。尽管使用LJ-PME的C36加力场仍然是液态烷烃的有用模型,但是使用LJ-PME的Drude极化力场对于几乎所有考虑的量都更准确。LJ-PME优于十六烷的各向同性远距离校正,因为分子阶数扩展到将近20Å,远远超出了大多数模拟中通常使用的10–12Å截止值。
更新日期:2018-01-09
down
wechat
bug