当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy
ACS Photonics ( IF 6.5 ) Pub Date : 2017-12-21 00:00:00 , DOI: 10.1021/acsphotonics.7b01393
Enrico Pomarico 1 , Ivan Madan 1 , Gabriele Berruto 1 , Giovanni Maria Vanacore 1 , Kangpeng Wang 2 , Ido Kaminer 2 , F. Javier García de Abajo 3, 4 , Fabrizio Carbone 1
Affiliation  

The electronic, optical, and magnetic properties of quantum solids are determined by their low-energy (<100 meV) many-body excitations. Dynamical characterization and manipulation of such excitations rely on tools that combine nm-spatial, fs-temporal, and meV-spectral resolution. Currently, phonons and collective plasmon resonances can be imaged in nanostructures with atomic (sub-nm) and tens of meV space/energy resolution using state-of-the-art energy-filtered transmission electron microscopy (TEM), but only under static conditions, while fs-resolved measurements are common but lack spatial or energy resolution. Here, we demonstrate a new method of spectrally resolved photon-induced near-field electron microscopy (SRPINEM) that allows us to obtain nm-fs-resolved maps of nanoparticle plasmons with an energy resolution determined by the laser line width (20 meV in this work) and no longer limited by the electron beam and spectrometer energy spreading. This technique can be extended to any optically accessible low-energy mode, thus pushing TEM to a previously unattainable spectral domain with an unprecedented combination of space, energy, and temporal resolution.

中文翻译:

激光辅助能量过滤透射电子显微镜中的meV分辨率

量子固体的电子,光学和磁性取决于它们的低能(<100 meV)多体激发。此类激发的动态表征和操作依赖于结合了纳米空间,fs时间和meV光谱分辨率的工具。当前,声子和集体等离振子共振可以使用最先进的能量过滤透射电子显微镜(TEM)在具有原子(sub-nm)和数十meV空间/能量分辨率的纳米结构中成像,但只能在静态条件下进行,虽然使用fs解析的测量很常见,但缺乏空间或能量分辨率。这里,我们展示了一种光谱分辨光子诱导的近场电子显微镜(SRPINEM)的新方法,该方法使我们能够获得具有由激光线宽确定的能量分辨率(在这项工作中为20 meV)的纳米粒子等离子体激元的nm-fs分辨图。不再受电子束和光谱仪能量扩散的限制。该技术可以扩展到任何光学可访问的低能量模式,从而将TEM推向以前无法实现的光谱域,具有空前的空间,能量和时间分辨率的组合。
更新日期:2017-12-21
down
wechat
bug