当前位置: X-MOL 学术Appl. Catal. A Gen. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced catalytic ozonation performance of highly stabilized mesoporous ZnO doped g-C3N4 composite for efficient water decontamination
Applied Catalysis A: General ( IF 4.7 ) Pub Date : 2017-12-21 , DOI: 10.1016/j.apcata.2017.12.011
Xiangjuan Yuan , Shule Duan , Guangyu Wu , Lei Sun , Gang Cao , Dongya Li , Haiming Xu , Qiang Li , Dongsheng Xia

A series of functional organic-metal zinc oxide (ZnO) doped graphitic carbon nitride (g-C3N4) denoted as ZnO-CN composites were fabricated via a facile mixing and calcination approach. The composition, structure, and morphology of the as-prepared ZnO-CN composites were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, fourier transform infrared (FT-IR), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), respectively. When loading amount of ZnO is 0.1 and calcination temperature is 650 °C (denoted as ZnO-CN0.1-650), the kinetic constant of atrazine (ATZ) degradation was 2.73 min−1, which was almost 10.5 times higher than that of ozone alone, exhibiting the highest catalytic ozonation activity. The results of the characterization indicated that ZnO-CN0.1-650 presents the mesoporous structure in laminated g-C3N4 and Zn(II) are strongly coordinated and stabilized within the electron-rich g-C3N4 framework. The feasibility of ZnO-CN0.1-650 for practical application was further evaluated at different catalyst dosages, initial ATZ concentrations, solution pHs, and natural organic matters. Radical scavengers experiments demonstrated that O2, OH, and 1O2 are the dominant reactive radical species. In addition, the composite showed excellent stability for pollutants removal over multiple reaction cycles. A possible mechanism of the enhanced catalytic ozonation activity is attributed to the host-guest interaction between ZnO and g-C3N4, as well as the improved meso-porosity, increased surface area, and intensive mass and electron transfer ability ascribed to the electronic and surface properties modification. Overall, the ZnO-CN0.1-650 composite is demonstrated to be a highly efficient, stable, and recoverable catalyst, which provided a promising alternative in catalytic ozonation.



中文翻译:

高度稳定的介孔ZnO掺杂gC 3 N 4复合材料的催化臭氧氧化性能增强,可进行有效的水净化

通过简便的混合和煅烧方法,制备了一系列功能性有机金属氧化锌(ZnO)掺杂的石墨氮化碳(gC 3 N 4),表示为ZnO-CN复合材料。制备的ZnO-CN复合材料的组成,结构和形貌通过X射线衍射(XRD),Brunauer-Emmett-Teller(BET)表面积,傅立叶变换红外光谱(FT-IR),场发射扫描进行表征电子显微镜(FESEM),透射电子显微镜(TEM)和X射线光电子能谱(XPS)。当ZnO的负载量为0.1且煅烧温度为650°C(表示ZnO-CN 0.1 -650)时,at去津(ATZ)降解的动力学常数为2.73 min -1,这比单独的臭氧高几乎10.5倍,表现出最高的催化臭氧化活性。表征结果表明,ZnO-CN 0.1 -650具有层状gC 3 N 4的介孔结构,而Zn(II)在富电子的gC 3 N 4骨架内具有很强的配位性和稳定性。在不同的催化剂用量,初始ATZ浓度,溶液pH值和天然有机物的条件下,进一步评估了ZnO-CN 0.1 -650在实际应用中的可行性。自由基清除剂的实验表明,直径:2 -,OH,和1 Ò 2是主要的反应性自由基基团。此外,该复合材料在多个反应循环中显示出优异的稳定性,可去除污染物。ZnO与gC 3 N 4之间的主体-客体相互作用,以及介孔率的提高,表面积的增加以及归因于电子和电子的密集的质量和电子转移能力,可能归因于催化臭氧氧化活性的提高。表面性质的修改。总体而言,ZnO-CN 0.1 -650复合材料被证明是高效,稳定和可回收的催化剂,为催化臭氧化提供了有希望的替代方法。

更新日期:2017-12-21
down
wechat
bug