当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In vivo genome editing improves motor function and extends survival in a mouse model of ALS.
Science Advances ( IF 11.7 ) Pub Date : 2017-Dec-01 , DOI: 10.1126/sciadv.aar3952
Thomas Gaj 1 , David S Ojala 2 , Freja K Ekman 3 , Leah C Byrne 4 , Prajit Limsirichai 5 , David V Schaffer 1, 2, 4
Affiliation  

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. We demonstrate that CRISPR-Cas9 can be harnessed to disrupt mutant SOD1 expression in the G93A-SOD1 mouse model of ALS following in vivo delivery using an adeno-associated virus vector. Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations.

中文翻译:


体内基因组编辑改善了 ALS 小鼠模型的运动功能并延长了生存期。



肌萎缩侧索硬化症(ALS)是一种致命且无法治愈的神经退行性疾病,其特征是脊髓和大脑中运动神经元的逐渐丧失。特别是,超氧化物歧化酶 1 (SOD1) 基因的常染色体显性突变导致约 20% 的家族性 ALS 病例。成簇的规则间隔短回文重复序列 (CRISPR)-CRISPR 相关 (Cas9) 基因组编辑系统具有通过促进移码诱导突变的引入来治疗常染色体显性遗传疾病的潜力,这些突变可以使突变基因功能失效。我们证明,使用腺相关病毒载体进行体内递送后,可以利用 CRISPR-Cas9 破坏 ALS G93A-SOD1 小鼠模型中突变型 SOD1 的表达。基因组编辑使腰椎和胸椎脊髓中的突变 SOD1 蛋白减少了 2.5 倍以上,从而改善了运动功能并减少了肌肉萎缩。至关重要的是,与对照动物相比,经过 CRISPR 介导的基因组编辑治疗的 ALS 小鼠在末期的运动神经元数量增加了约 50%,并且疾病发作延迟了约 37%,存活率增加了约 25%。因此,这项研究说明了 CRISPR-Cas9 治疗 SOD1 相关形式的 ALS 和由常染色体显性突变引起的其他中枢神经系统疾病的潜力。
更新日期:2017-12-21
down
wechat
bug