当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determination of dissociation front and operational optimization for hydrate development by combining depressurization and hot brine stimulation
Gas Science and Engineering Pub Date : 2017-12-19
Yurong Jin, Shuxia Li, Daoyong Yang, Xingxing Jiang

Techniques have been developed to determine dissociation front (i.e., the boundary where hydrate saturation is decreased to 0) for hydrate development by combining depressurization and hot brine stimulation. Experimentally, hydrate dissociation is determined with a one-dimensional (1D) model by gradually injecting hot brine to examine gas and water production. Theoretically, simulation techniques are employed to determine the decay rate and relative permeability by fitting the experimental measurements. Subsequently, the numerical techniques are well matched with field test data and then extended to field applications by applying two different development methods (i.e., depressurization and combining it with hot brine injection). It is found that the combination method greatly improves gas recovery by approximately 35.00%, higher water production rate, and lower gas water ratio compared with those of depressurization alone. The orthogonal design method is then used to perform sensitivity analysis and optimize operational parameters by maximizing energy efficiency as the objective function. The most sensitive parameters are found to be the brine temperature, producer bottomhole pressure, brine injection rate, and injection time. Two dissociation fronts are formed separately near the producer and injector, while the dissociation front of the producer is found to move slower than that of the injector due to the different driving mechanisms for the movement of two dissociation fronts.



中文翻译:

结合降压和热盐水刺激,确定离解锋和水合物开发的操作优化

已经开发了通过结合减压和热盐水刺激来确定水合物发育的解离前沿(即,水合物饱和度降低至0的边界)的技术。实验上,通过逐步注入热盐水以检查天然气和水的产生,使用一维(1D)模型确定水合物的离解。从理论上讲,模拟技术可通过拟合实验测量值来确定衰减率和相对磁导率。随后,数值技术与现场测试数据很好地匹配,然后通过应用两种不同的开发方法(即降压并将其与热盐水注入相结合)扩展到现场应用。发现该组合方法可将气体回收率大大提高约35.00%,与单独减压相比,具有更高的产水率和更低的气水比。然后将正交设计方法用于执行灵敏度分析,并通过将能效最大化作为目标函数来优化运行参数。发现最敏感的参数是盐水温度,生产者井底压力,盐水注入速率和注入时间。在生产者和注入者附近分别形成两个解离锋,而由于两个解离锋的运动的驱动机制不同,发现生产者的解离锋的运动比注入器慢。然后将正交设计方法用于执行灵敏度分析,并通过将能效最大化作为目标函数来优化运行参数。发现最敏感的参数是盐水温度,生产者井底压力,盐水注入速率和注入时间。在生产者和注入者附近分别形成两个解离锋,而由于两个解离锋的运动的驱动机制不同,发现生产者的解离锋的运动比注入器慢。然后将正交设计方法用于执行灵敏度分析,并通过将能效最大化作为目标函数来优化运行参数。发现最敏感的参数是盐水温度,生产者井底压力,盐水注入速率和注入时间。在生产者和注入者附近分别形成两个解离锋,而由于两个解离锋的运动的驱动机制不同,发现生产者的解离锋的运动比注入器慢。

更新日期:2017-12-19
down
wechat
bug