当前位置: X-MOL 学术Particuology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of oxide nanoparticle growth characteristics under the gas detonation chemical reaction by space-time conservation element–solution element method
Particuology ( IF 3.5 ) Pub Date : 2017-06-12 , DOI: 10.1016/j.partic.2017.01.006
Ning Luo , Hua Shen , Hongwen Jing , Zhangguo Ma , Weiming Yang

Under harsh conditions (such as high temperature, high pressure, and millisecond lifetime chemical reaction), a long-standing challenge remains to accurately predict the growth characteristics of nanosize spherical particles and to determine the rapid chemical reaction flow field characteristics. The growth characteristics of similar spherical oxide nanoparticles are further studied by successfully introducing the space-time conservation element–solution element (CE/SE) algorithm with the monodisperse Kruis model. This approach overcomes the nanosize particle rapid growth limit set and successfully captures the characteristics of the rapid gaseous chemical reaction process. The results show that this approach quantitatively captures the characteristics of the rapid chemical reaction, nanosize particle growth and size distribution. To reveal the growth mechanism for numerous types of oxide nanoparticles, it is very important to choose a rational numerical method and particle physics model.



中文翻译:

时空守恒元素-溶液元素法在气体爆炸化学反应下氧化物纳米颗粒生长特性的数值模拟

在苛刻的条件下(例如高温,高压和毫秒级化学反应),准确预测纳米球形颗粒的生长特性并确定快速化学反应流场特性仍然是一项长期的挑战。通过成功地引入具有单分散Kruis模型的时空守恒元素-溶液元素(CE / SE)算法,可以进一步研究相似球形氧化物纳米颗粒的生长特性。这种方法克服了纳米级颗粒快速增长的限制,并成功地捕获了快速气态化学反应过程的特征。结果表明,该方法定量地捕获了快速化学反应,纳米级颗粒生长和尺寸分布的特征。

更新日期:2017-06-12
down
wechat
bug