当前位置: X-MOL 学术ACS Cent. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials
ACS Central Science ( IF 12.7 ) Pub Date : 2017-12-15 00:00:00 , DOI: 10.1021/acscentsci.7b00449
Brad A. Krajina 1 , Carolina Tropini 2 , Audrey Zhu 1 , Philip DiGiacomo 3 , Justin L. Sonnenburg 2 , Sarah C. Heilshorn 4 , Andrew J. Spakowitz 1, 4, 5, 6
Affiliation  

The development of experimental techniques capable of probing the viscoelasticity of soft materials over a broad range of time scales is essential to uncovering the physics that governs their behavior. In this work, we develop a microrheology technique that requires only 12 μL of sample and is capable of resolving dynamic behavior ranging in time scales from 10–6 to 10 s. Our approach, based on dynamic light scattering in the single-scattering limit, enables the study of polymer gels and other soft materials over a vastly larger hierarchy of time scales than macrorheology measurements. Our technique captures the viscoelastic modulus of polymer hydrogels with a broad range of stiffnesses from 10 to 104 Pa. We harness these capabilities to capture hierarchical molecular relaxations in DNA and to study the rheology of precious biological materials that are impractical for macrorheology measurements, including decellularized extracellular matrices and intestinal mucus. The use of a commercially available benchtop setup that is already available to a variety of soft matter researchers renders microrheology measurements accessible to a broader range of users than existing techniques, with the potential to reveal the physics that underlies complex polymer hydrogels and biological materials.

中文翻译:

动态光散射微流变学揭示了聚合物凝胶和珍贵生物材料的多尺度粘弹性

能够在较宽的时间范围内探测软材料的粘弹性的实验技术的发展对于揭示控制其行为的物理学至关重要。在这项工作中,我们开发了一种仅需12μL样品的微流变技术,并且能够解决10 –6到10 s时间范围内的动态行为。我们的方法基于在单散射极限内的动态光散射,可以在比宏观流变学测量更大的时间范围内研究聚合物凝胶和其他软材料。我们的技术可捕获聚合物水凝胶的粘弹性模量,其刚度范围从10到10 4宾夕法尼亚州。我们利用这些功能来捕获DNA中的分层分子弛豫,并研究宝贵的生物材料的流变学,这些材料对于宏观流变学测量是不切实际的,包括脱细胞的细胞外基质和肠粘液。与各种现有技术相比,使用已经可供各种软物质研究人员使用的商用台式设备,使微流变学测量的使用范围比现有技术更广泛,并且有可能揭示构成复杂聚合物水凝胶和生物材料基础的物理原理。
更新日期:2017-12-15
down
wechat
bug