当前位置: X-MOL 学术ACS Cent. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploiting Anti-T-shaped Graphene Architecture to Form Low Tortuosity, Sieve-like Interfaces for High-Performance Anodes for Li-Based Cells
ACS Central Science ( IF 12.7 ) Pub Date : 2017-12-13 00:00:00 , DOI: 10.1021/acscentsci.7b00444
Dong Wang 1 , Wei Zhang 1, 2, 3 , Nicholas E. Drewett 2 , Xiaofei Liu 1 , Seung Jo Yoo 4 , Sang-Gil Lee 4 , Jin-Gyu Kim 4 , Ting Deng 1 , Xiaoyu Zhang 1 , Xiaoyuan Shi 1 , Weitao Zheng 1
Affiliation  

Graphitic carbon anodes have long been used in Li ion batteries due to their combination of attractive properties, such as low cost, high gravimetric energy density, and good rate capability. However, one significant challenge is controlling, and optimizing, the nature and formation of the solid electrolyte interphase (SEI). Here it is demonstrated that carbon coating via chemical vapor deposition (CVD) facilitates high electrochemical performance of carbon anodes. We examine and characterize the substrate/vertical graphene interface (multilayer graphene nanowalls coated onto carbon paper via plasma enhanced CVD), revealing that these low-tortuosity and high-selection graphene nanowalls act as fast Li ion transport channels. Moreover, we determine that the hitherto neglected parallel layer acts as a protective surface at the interface, enhancing the anode performance. In summary, these findings not only clarify the synergistic role of the parallel functional interface when combined with vertical graphene nanowalls but also have facilitated the development of design principles for future high rate, high performance batteries.

中文翻译:

利用反T形石墨烯架构来形成低曲折,筛状界面,以实现基于锂的电池的高性能阳极

石墨碳阳极由于其吸引人的特性(如低成本,高重量能密度和良好的倍率性能)的组合而长期用于锂离子电池。但是,一项重大挑战是控制和优化固体电解质中间相(SEI)的性质和形成。在此证明了通过化学气相沉积(CVD)进行的碳涂覆促进了碳阳极的高电化学性能。我们检查并表征了基材/垂直石墨烯界面(通过等离子增强CVD涂覆到碳纸上的多层石墨烯纳米壁),揭示了这些低曲折度和高选择度的石墨烯纳米壁可作为快速的Li离子传输通道。此外,我们确定迄今为止被忽略的平行层在界面处充当保护面,增强阳极性能。总之,这些发现不仅阐明了平行功能界面与垂直石墨烯纳米壁结合时的协同作用,而且还促进了未来高速率,高性能电池设计原理的发展。
更新日期:2017-12-13
down
wechat
bug