当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron Induced Surface Reactions of HFeCo3(CO)12, a Bimetallic Precursor for Focused Electron Beam Induced Deposition (FEBID)
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-01-16 00:00:00 , DOI: 10.1021/acs.jpcc.7b08611
Ragesh Kumar T P 1 , Ilyas Unlu 2 , Sven Barth 3 , Oddur Ingólfsson 1 , D. Howard Fairbrother 2
Affiliation  

The use of bimetallic precursors in focused electron beam induced deposition (FEBID) allows mixed metal nanostructures with well-defined metal ratios to be generated in a single step process. HFeCo3(CO)12 is an example of one such bimetallic precursor that has previously been shown to form deposits with unusually high metal content (>80%) as compared to that of typical FEBID deposits (<30% metal content). To better understand the elementary bond breaking steps involved in FEBID of HFeCo3(CO)12, we have employed a UHV surface science approach to study the effect of electron irradiation on nanometer thick films of HFeCo3(CO)12 molecules. Using a combination of in situ X-ray photoelectron spectroscopy and mass spectrometry, we observed that the initial step of electron induced HFeCo3(CO)12 dissociation is accompanied by desorption of ∼75% of the CO ligands from the precursor. A comparison with recent gas phase studies of HFeCo3(CO)12 indicates that this process is consistent with a dissociative ionization process, mediated by the secondary electrons produced by interaction of the primary beam with the substrate. The loss of CO ligands from HFeCo3(CO)12 in the initial dissociation step creates partially decarbonylated intermediates, HFeCo3(CO)x (xavg. ≈ 3). During a typical FEBID process, further electron exposure or thermal reactions can further transform these intermediates. In our UHV surface science approach, the effect of these two processes can be studied in isolation and identified. Under the influence of further electron irradiation, XPS data reveals that the remaining CO ligands in the partially decarbonylated intermediates decompose to form residual carbon and iron oxides, suggesting that those CO ligands that desorbed in the initial step are lost predominantly from the Co atoms. However, annealing experiments demonstrate that CO ligands in the partially decarbonylated intermediates desorb under vacuum conditions at room temperature, leaving behind films that are free of almost any carbon or oxygen contaminants. This combination of efficient CO desorption during the initial dissociation step, followed by thermal CO desorption from the partially decarbonylated HFeCo3(CO)x (xavg. ≈ 3) intermediates provide a rationale for the high metal contents observed in FEBID nanostructures created from HFeCo3(CO)12.

中文翻译:

聚焦电子束诱导沉积(FEBID)的双金属前驱体HFeCo 3(CO)12的电子诱导表面反应

在聚焦电子束诱导沉积(FEBID)中使用双金属前驱体可以在一个步骤的过程中生成具有明确定义的金属比的混合金属纳米结构。HFeCo 3(CO)12是一种这样的双金属前驱物的示例,先前已证明它与典型的FEBID沉积物(<30%金属含量)相比,形成了具有异常高的金属含量(> 80%)的沉积物。为了更好地了解HFeCo 3(CO)12的FEBID中涉及的基本键断裂步骤,我们采用了特高压表面科学方法来研究电子辐照对HFeCo 3(CO)12纳米厚膜的影响分子。结合使用原位X射线光电子能谱和质谱,我们观察到电子诱导的HFeCo 3(CO)12解离的初始步骤伴随着〜75%的CO配体从前体解吸。与HFeCo 3(CO)12的最新气相研究的比较表明,该过程与解离电离过程相一致,该过程是由一次电子束与基板相互作用产生的二次电子介导的。在初始解离步骤中,从HFeCo 3(CO)12中失去CO配体会产生部分脱羰基的中间体HFeCo 3(CO)xx平均≈3)。在典型的FEBID过程中,进一步的电子暴露或热反应可能会进一步转化这些中间体。在我们的特高压表面科学方法中,可以单独研究和确定这两个过程的影响。在进一步的电子辐射的影响下,XPS数据显示部分脱羰基中间体中的其余CO配体分解形成残留的碳和铁氧化物,这表明在初始步骤中解吸的那些CO配体主要从Co原子中丢失。但是,退火实验表明,部分脱羰基中间体中的CO配体在室温下在真空条件下会解吸,从而留下几乎不含任何碳或氧污染物的薄膜。3(CO)xx平均≈3)中间体为从HFeCo 3(CO)12创建的FEBID纳米结构中观察到的高金属含量提供了理论依据。
更新日期:2018-01-16
down
wechat
bug