当前位置: X-MOL 学术Neuroscientist › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?
The Neuroscientist ( IF 3.5 ) Pub Date : 2017-05-17 , DOI: 10.1177/1073858417707457
Gonca Bayraktar 1 , Michael R. Kreutz 1, 2
Affiliation  

A rapidly increasing number of neuroepigenetic studies have been published in the past decade. This work not only contributed to a better understanding of genetic imprinting, maintenance of genomic stability, and how gene-environment interactions can influence the onset of brain diseases, but it also revealed possible mechanisms of epigenetic transmission of behavioral traits as well as transgenerational inheritance, to name only a few major advances (Blake and Watson 2016; Graff and Mansuy 2009; Sweatt 2013; Tsankova and others 2007). One driving force of this research is the question of how epigenetic modifications relate to cognition and long-term memory formation. More than 30 years ago, Francis Crick speculated that memories might be encoded in alterations of the chromosomal DNA in the brain (Crick 1984). However, only in recent years was it possible to unravel the mechanisms by which epigenetic readers and writers might induce such changes. Epigenetic modifiers place or remove epigenetic marks mainly by modification of DNA and histones. The attachment of methyl groups to the 5′-carbon of cytosine is one of the chemical labels on the backbone of DNA. DNA methyltransferases (DNMTs) are the major epigenetic building blocks of 5-methyl-cytosine methylation in DNA (Denis and others 2011) (Fig. 1), which in turn controls binding of proteins to DNA and thereby gene expression. In this review, we primarily focus on the contribution of the de novo methyltransferases DNMT3A and -B and discuss how DNA methylation is regulated by these enzymes in postmitotic neurons in the context of memory formation, behavioral plasticity, and psychiatric disorders.

中文翻译:

神经元DNA甲基转移酶:突触活性和基因表达之间的表观遗传介导?

在过去的十年中,神经表观遗传学研究的数量迅速增加。这项工作不仅有助于更好地了解遗传标记,维持基因组稳定性以及基因与环境的相互作用如何影响脑部疾病的发生,而且还揭示了行为特征的表观遗传传递以及跨代遗传的可能机制,仅列举了一些重大进展(Blake和Watson,2016年; Graff和Mansuy,2009年; Sweatt,2013年; Tsankova等,2007年)。这项研究的一个驱动力是表观遗传修饰如何与认知和长期记忆形成有关的问题。30多年前,弗朗西斯·克里克(Francis Crick)推测,记忆可能是通过大脑染色体DNA的改变来编码的(Crick 1984)。然而,仅在最近几年,才有可能揭示表观遗传的读者和作家可能引起这种变化的机制。表观遗传修饰剂主要通过DNA和组蛋白的修饰来放置或去除表观遗传标记。甲基与胞嘧啶5'-碳的连接是DNA骨架上的化学标记之一。DNA甲基转移酶(DNMT)是DNA中5-甲基胞嘧啶甲基化的主要表观遗传基石(Denis等2011)(图。1),进而控制蛋白质与DNA的结合,进而控制基因的表达。在这篇综述中,我们主要关注从头甲基转移酶DNMT3A和-B的贡献,并讨论在记忆形成,行为可塑性和精神疾病的背景下,这些酶如何在有丝分裂后神经元中调节DNA甲基化。
更新日期:2017-05-17
down
wechat
bug