当前位置: X-MOL 学术Curr. Opin. Solid State Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys
Current Opinion in Solid State & Materials Science ( IF 11.0 ) Pub Date : 2017-03-18 , DOI: 10.1016/j.cossms.2017.02.002
Yanwen Zhang , Shijun Zhao , William J. Weber , Kai Nordlund , Fredric Granberg , Flyura Djurabekova

Performance enhancement of structural materials in extreme radiation environments has been actively investigated for many decades. Traditional alloys, such as steel, brass and aluminum alloys, normally contain one or two principal element(s) with a low concentration of other elements. While these exist in either a mixture of metallic phases (multiple phases) or in a solid solution (single phase), limited or localized chemical disorder is a common characteristic of the main matrix. Fundamentally different from traditional alloys, recently developed single-phase concentrated solid-solution alloys (CSAs) contain multiple elemental species in equiatomic or high concentrations with different elements randomly arranged on a crystalline lattice. Due to the lack of ordered elemental arrangement in these CSAs, they exhibit significant chemical disorder and unique site-to-site lattice distortion. While it is well recognized in traditional alloys that minor additions lead to enhanced radiation resistance, it remains unclear in CSAs how atomic-level heterogeneity affects defect formation, damage accumulation, and microstructural evolution. These knowledge gaps have acted as roadblocks to the development of future-generation energy technology. CSAs with a simple crystal structure, but complex chemical disorder, are unique systems that allow us, through replacing principal alloying elements and modifying concentrations, to study how compositional complexity influences defect dynamics, and to bridge the knowledge gaps through understanding intricate electronic- and atomic-level interactions, mass and energy transfer processes, and radiation resistance performance. Recent advances in defect dynamics and irradiation performance of CSAs are reviewed, intrinsic chemical effects on radiation performance are discussed, and direction for future studies is suggested.



中文翻译:

浓缩固溶合金中的原子级异质性和缺陷动力学

数十年来,人们一直在积极研究增强结构材料在极端辐射环境下的性能。传统合金(例如钢,黄铜和铝合金)通常包含一种或两种主要元素,而其他元素的浓度低。尽管它们以金属相(多相)的混合物或固溶体(单相)的形式存在,但有限或局限的化学无序是主要基质的共同特征。与传统合金的根本不同,最近开发的单相浓缩固溶合金(CSA)包含等原子或高浓度的多种元素物种,且不同元素随机排列在晶格上。由于这些CSA中缺少有序的元素排列,它们表现出显着的化学紊乱和独特的位点间晶格畸变。尽管在传统合金中已经众所周知,微量添加会增强抗辐射性,但在CSA中尚不清楚原子级异质性如何影响缺陷形成,损伤累积和微结构演变。这些知识差距已成为发展下一代能源技术的障碍。具有简单晶体结构但复杂的化学无序性的CSA是独特的系统,它使我们能够通过替换主要的合金元素和修改浓度来研究组成复杂性如何影响缺陷动力学,并通过理解复杂的电子和原子来弥合知识鸿沟级相互作用,质量和能量转移过程,和抗辐射性能。综述了CSA缺陷动力学和辐照性能的最新进展,讨论了化学性质对辐照性能的影响,并提出了今后研究的方向。

更新日期:2017-03-18
down
wechat
bug